Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 7—July 2005
Synopsis

SARS Vaccine Development

Shibo Jiang*Comments to Author , Yuxian He*, and Shuwen Liu*
Author affiliations: *New York Blood Center, New York, New York, USA

Main Article

Table

Comparison of civet SARS-CoV-like virus and the early and late human SARS-CoV*

Characteristics SARS-CoV–like virus Early human SARS-CoV Late human SARS-CoV
Transmission Animal-to-animal Animal/human-to-human Human-to-human
Outbreak No No/local Local/global
Causes disease No Mild Severe
Representative strains SZ3, SZ16 GD03T0013 Tor2, Urbani, BJ01, GZ02
Source Palm civets SARS patients during 2003–2004 epidemic SARS patients during 2002–2003 outbreak
29-nucleotide deletion No No Yes (some have a 415– nucleotide deletion)
Properties of spike protein
Genetic homogenicity Low Low High
Rate of nonsynonymous mutation High High Low
Binding affinity to ACE2 Low Low High

*Information was obtained from references 46. SARS-COV, severe acute respiratory syndrome–associated coronavirus; ACE2, angiotensin-converting enzyme 2.

Main Article

References
  1. Peiris  JS, Guan  Y, Yuen  KY. Severe acute respiratory syndrome. Nat Med. 2004;10:S8897. DOIPubMedGoogle Scholar
  2. Snijder  EJ, Bredenbeek  PJ, Dobbe  JC, Thiel  V, Ziebuhr  J, Poon  LLM, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003;331:9911004. DOIPubMedGoogle Scholar
  3. Guan  Y, Zheng  BJ, He  YQ, Liu  XL, Zhuang  ZX, Cheung  CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:2768. DOIPubMedGoogle Scholar
  4. Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303:16669. DOIPubMedGoogle Scholar
  5. Guan  Y, Peiris  JS, Zheng  B, Poon  LL, Chan  KH, Zeng  FY, Molecular epidemiology of the novel coronavirus that causes severe acute respiratory syndrome. Lancet. 2004;363:99104. DOIPubMedGoogle Scholar
  6. Yang  ZY, Werner  HC, Kong  WP, Leung  K, Traggiai  E, Lanzavecchia  A, Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A. 2005;102:797801. DOIPubMedGoogle Scholar
  7. Seto  WH, Tsang  D, Yung  RWH, Ching  TY, Ng  TK, Ho  M, Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS). Lancet. 2003;361:151920. DOIPubMedGoogle Scholar
  8. Xiong  S, Wang  YF, Zhang  MY, Liu  XJ, Zhang  CH, Liu  SS, Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett. 2004;95:13943. DOIPubMedGoogle Scholar
  9. He  Y, Zhou  Y, Siddiqui  P, Jiang  S. Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun. 2004;325:44552. DOIPubMedGoogle Scholar
  10. Chou  TH, Wang  S, Sakhatskyy  PV, Mboudoudjeck  I, Lawrence  JM, Huang  S, Epitope mapping and biological function analysis of antibodies produced by immunization of mice with an inactivated Chinese isolate of severe acute respiratory syndrome–associated coronavirus (SARS-CoV). Virology. 2005;334:13443. DOIPubMedGoogle Scholar
  11. Qu  D, Zheng  B, Yao  X, Guan  Y, Yuan  ZH, Zhong  NS, Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine. 2005;23:92431. DOIPubMedGoogle Scholar
  12. Marshall  E, Enserink  M. Medicine. Caution urged on SARS vaccines. Science. 2004;303:9446. DOIPubMedGoogle Scholar
  13. Wang  D, Lu  J. Glycan arrays lead to the discovery of autoimmunogenic activity of SARS-CoV. Physiol Genomics. 2004;18:2458. DOIPubMedGoogle Scholar
  14. Holmes  KV. SARS-associated coronavirus. N Engl J Med. 2003;348:194851. DOIPubMedGoogle Scholar
  15. Li  WH, Moore  MJ, Vasilieva  NY, Sui  JH, Wong  SK, Berne  AM, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:4504. DOIPubMedGoogle Scholar
  16. Prabakaran  P, Xiao  X, Dimitrov  DS. A model of the ACE2 structure and function as a SARS-CoV receptor. Biochem Biophys Res Commun. 2004;314:23541. DOIPubMedGoogle Scholar
  17. Wong  SK, Li  W, Moore  MJ, Choe  H, Farzan  M. A 193-amino-acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2003;279:3197201. DOIPubMedGoogle Scholar
  18. Xiao  X, Chakraborti  S, Dimitrov  AS, Gramatikoff  K, Dimitrov  DS. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun. 2003;312:115964. DOIPubMedGoogle Scholar
  19. Dimitrov  DS. The secret life of ACE2 as a receptor for the SARS virus. Cell. 2003;115:6523. DOIPubMedGoogle Scholar
  20. Yang  ZY, Huang  Y, Ganesh  L, Leung  K, Kong  WP, Schwartz  O, pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004;78:564250. DOIPubMedGoogle Scholar
  21. Jeffers  SA, Tusell  SM, Gillim-Ross  L, Hemmila  EM, Achenbach  JE, Babcock  GJ, CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101:1574853. DOIPubMedGoogle Scholar
  22. Liu  S, Xiao  G, Chen  Y, He  Y, Niu  J, Escalante  C, Interaction between the heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implication for virus fusogenic mechanism and identification of fusion inhibitors. Lancet. 2004;363:93847. DOIPubMedGoogle Scholar
  23. Tripet  B, Howard  MW, Jobling  M, Holmes  RK, Holmes  KV, Hodges  RS. Structural characterization of the SARS-coronavirus spike S fusion protein core. J Biol Chem. 2004;279:2083649. DOIPubMedGoogle Scholar
  24. Xu  Y, Lou  Z, Liu  Y, Pang  H, Tien  P, Gao  GF, Crystal structure of SARS-CoV spike protein fusion core. J Biol Chem. 2004;279:494149. DOIPubMedGoogle Scholar
  25. Yang  ZY, Kong  WP, Huang  Y, Roberts  A, Murphy  BR, Subbarao  K, A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428:5614. DOIPubMedGoogle Scholar
  26. Wang  S, Chou  TH, Sakhatskyy  PV, Huang  S, Lawrence  JM, Cao  H, Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J Virol. 2005;79:190610. DOIPubMedGoogle Scholar
  27. Keng  CT, Zhang  A, Shen  S, Lip  KM, Fielding  BC, Tan  TH, Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus s protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol. 2005;79:328996. DOIPubMedGoogle Scholar
  28. Zhong  X, Yang  H, Guo  ZF, Sin  WY, Chen  W, Xu  J, B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J Virol. 2005;79:34018. DOIPubMedGoogle Scholar
  29. Bisht  H, Roberts  A, Vogel  L, Bukreyev  A, Collins  PL, Murphy  BR, Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004;101:66416. DOIPubMedGoogle Scholar
  30. Bukreyev  A, Lamirande  EW, Buchholz  UJ, Vogel  LN, Elkins  WR, St Claire  M, Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet. 2004;363:21227. DOIPubMedGoogle Scholar
  31. He  Y, Zhou  Y, Wu  H, Luo  B, Chen  J, Li  W, Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J Immunol. 2004;173:40507.PubMedGoogle Scholar
  32. Olsen  CW, Corapi  WV, Jacobson  RH, Simkins  RA, Saif  LJ, Scott  FW. Identification of antigenic sites mediating antibody-dependent enhancement of feline infectious peritonitis virus infectivity. J Gen Virol. 1993;74:7459. DOIPubMedGoogle Scholar
  33. Jiang  S, Lin  K, Neurath  AR. Enhancement of human immunodeficiency virus type-1 (HIV-1) infection by antisera to peptides from the envelope glycoproteins gp120/gp41. J Exp Med. 1991;174:155763. DOIPubMedGoogle Scholar
  34. Weingartl  H, Czub  M, Czub  S, Neufeld  J, Marszal  P, Gren  J, Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 2004;78:126726. DOIPubMedGoogle Scholar
  35. He  Y, Zhu  Q, Liu  S, Zhou  Y, Yang  B, Li  J, Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: importance for designing SARS vaccines. Virology. 2005;334:7482. DOIPubMedGoogle Scholar
  36. Chen  Z, Zhang  L, Qin  C, Ba  L, Yi  CE, Zhang  F, Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol. 2005;79:267888. DOIPubMedGoogle Scholar
  37. He  Y, Zhou  Y, Liu  S, Kou  Z, Li  W, Farzan  M, Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun. 2004;324:77381. DOIPubMedGoogle Scholar
  38. He  Y, Lu  H, Siddiqui  P, Zhou  Y, Jiang  S. Receptor-binding domain of SARS coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol. 2005;174:490815.PubMedGoogle Scholar
  39. van den Brink  EN, Ter Meulen  J, Cox  F, Jongeneelen  MA, Thijsse  A, Throsby  M, Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J Virol. 2005;79:163544. DOIPubMedGoogle Scholar

Main Article

Page created: April 24, 2012
Page updated: April 24, 2012
Page reviewed: April 24, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external