
Technical Appendix

In this document we provide additional information about the methods used
in the simulation study that we describe in the main paper. In section 1 we
describe the simulation model and in section 2 we describe the study design.

1 Simulation Model

The simulation model used in this study builds on our earlier work [5–7].

1.1 Dispersion

The dispersion model takes as input the amount of anthrax spores released and
returns as output the number of spores an individual would inhale at locations
on a regular grid overlaid upon the study region. To model the dispersion
of anthrax spores, we used the Hazard Prediction and Assessment Capability
(HPAC) software, which is developed by the US Defence Threat Reduction
Agency (DTRA) to allow modeling of threats from weapons of mass destruction
[8]. This software uses meteorological and terrain data to interpolate time-
integrated exposure concentrations from a release scenario onto a spatial grid,
relying on the second-order cluster integrated puff model [24].

The HPAC software outputs a mean exposure plume for a release scenario.
The mean plume is determined within HPAC by simulating many individual
plumes and then calculating the mean and standard deviation of exposure at
each location on an exposure grid. We did not use the mean plume directly
because it smooths out the variation in spore concentration within a plume
and because the mean plume tends to overestimate exposure at the margins
of the plume. To address these limitations of the mean plume, we re-sampled
randomly from the mean plume.

The release scenario we used for all release amounts was a stationary release
in the area of the Langley Air Force Base (37.1N, 76.4W), using weather data
for Veteran’s Day (November 11, 5 am EST, 2 m s−1 NNW wind, clear skies),
with a 2 m release height, and a 10 s duration. The HPAC software was set
to calculate a boundary layer and large-scale variability, and to include terrain
effects. We assumed that 1 kg of spores contained 1015 spores and we modeled
the dispersion of 1 kg, 0.1 kg, and 0.01 kg of spores. We calculated a mean
plume at each release amount and then re-sampled 1,000 random plumes from
each mean plume. The HPAC model provides the time-integrated concentration
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at each location and we assumed that individuals breathed at a rate of 0.0005
m3s−1 to determine the number of spores an individual would inhale at locations
throughout the study region.

1.2 Infection

The infection model takes as input the number of spores an individual would
inhale at locations on a regular grid (output from the dispersion model) and the
population by ZIP code. The model returns the number of infected individuals
by residential ZIP code. We assumed that all individuals were exposed at their
home address and that each individual had a uniform probability of being ex-
posed at any location within their home ZIP code. To determine the probability
of infection following exposure to a given number of spores, we used a function
corresponding to the data reported by Glassman following experimental expo-
sure of primates [10]. This is a probit model with an LD50 of 8,600 spores and
a slope of 0.67. Figure 1 shows a plot of the infection function. This function
allows for infection at low dose exposure. For example, approximately 2.5% of
individuals exposed to 10 spores will become infected.

To determine the number infected by home ZIP code, we first determined
the probability of infection for each ZIP code Zi as the average probability of
infection across the ZIP code:

pZi =
1
ni

ni∑

j=1

f(cj),

where there are ni cells from the exposure grid within ZIP code Zi and
f(cj) is the infection function that returns the probability of infection given the
number of spores inhaled in cell cj . The number of individual infected within a
ZIP code IZi was then sampled from a binomial distribution:

IZi ∼ binomial(NZi , pZi),

where NZi is the population of ZIP code Zi.

1.3 Disease

The disease model takes as input the number of infected individuals and returns
a disease path for each individual. The disease path describes the amount of time
spent in each discrete disease state. We used a semi-Markov process to model
progression of an individual with inhalational anthrax through three disease
states: incubation, prodromal, and fulminant (Figure 2) [26].

The definition of the semi-Markov process requires identification of the states,
including the holding-time functions, and specification of the transition proba-
bilities between states. The initial state in the model was incubation, followed
by certain transition to the prodromal state, and then the fulminant state. For
holding-time functions, we used the lognormal distribution, which appears to de-
scribe the duration of incubation for many diseases [20, 23], including inhalation
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Figure 1: The infection function for inhaled anthrax determined mainly from primate

research [10].
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Figure 2: The disease model for inhalational anthrax. Infected individuals all pass

through three disease states. In the incubation state individuals have no symptoms.

In the prodromal state individuals experience an influenza-like illness. Finally, in the

fulminant state individuals experience severe symptoms, such as shock. The holding-

time function in each state is a lognormal distribution with parameters shown in Table

1.
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Figure 3: The health-care utilization model. When individuals enter the prodromal or

fulminant disease state, they enter the health-care utilization model. The probability

of making a visit (αs) varies by disease state (Table 1). The probability of a positive

blood culture (βs) is the product of the probability of ordering a test (which varies by

disease state) and the sensitivity of the test (which does not vary by disease state).

The probability of isolating the organism does not vary by disease state. The holding-

time function for the ‘No Visit’ state is triangular, with a duration equivalent to the

length of the disease state. Holding-time functions for the ‘Visit’ and ‘Growth’ states

are exponential, with parameters shown in Table 1.

anthrax [4, 17]. The values used to parameterize the holding-time functions are
taken from observational studies of human exposure [4, 17] and other modeling
studies [25, 26], and are shown in Table 1.

1.4 Health-Care Utilization

The health-care utilization model takes as input a set of disease paths and for
each path performs three tasks: (1) it identifies if and when individuals seek care
in each disease state, (2) it determines the presenting syndrome for individuals
that seek care, and (3) it identifies the timing and results of blood culture testing
once care is sought.

We used a semi-Markov process to model health-care utilization (Figure
3). A separate process was used to describe health-care utilization in each
of the prodromal and fulminant disease states. Both processes had the same
states and transitions (Figure 3), but some values for holding-time functions
and transition probabilities differed between the disease states (i.e., those states
with a s subscript in Figure 3) and the values used in the simulation study are
shown in Table 1.

The transition from ‘No Visit’ to ‘Visit’ represents an individual seeking
care at an ambulatory clinic or emergency department. The probability of
this transition occurring (αs) differs between disease states (s). We set the
probability of a visit in the prodromal disease state (αp), to approximately 0.30
because cross-sectional surveys suggest that this proportion of individuals visit
a physician at some point during an episode of upper respiratory tract illness
[15, 18]. For the fulminant disease state (αf ), we estimated the probability of
seeking care as approximately 95% given the severity of the symptoms in that
state.

The transition from ‘Visit’ to ‘Growth’ represents an individual having a
positive blood culture test after making a visit. The probability of this transition
(βs) is the product of the probability of performing a blood culture test (β1

s ) and
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the sensitivity of the test (β2, i.e., βs = β1
s×β2). The probability of performing a

test in the prodromal state (β1
p), was estimated from the National Ambulatory

Health Care Survey as approximately 0.0125 [9]. In the fulminant state, we
assumed that the probability of a blood culture test (β1

f ) was approximately
0.95. We relied on published studies of blood-culture testing to estimate the
sensitivity of blood-culture testing in both symptomatic disease states (β2) as
approximately 0.85 [21].

The final transition, from ‘Growth’ to ‘Isolation’, represents the decision to
isolate the organism from a blood culture bottle growing gram-positive rods. We
relied on data from a recent survey to estimate this value (γ) as approximately
0.9 [2].

In addition to a transition probability, each of the first three states in the
health-care utilization model also requires a holding-time function. The holding-
time function for the ‘No Visit’ state models the distribution of time to seeking
care, given that care is sought. We used a right triangular distribution fit
to the time spent in the disease state. So, for example, if an individual had a
prodromal disease state duration of 10 days, then the probability of seeking care
at the instant of entering the disease state would be zero, and the instantaneous
probability of seeking care would increase linearly to 0.2 at ten days, with a mean
time to seeking care of 6.7 days.1 This approach to modeling visits effectively
limits individuals to a single visit in each disease state. The selection of a
triangular distribution reflects the lack of published evidence about the timing
of health-care utilization following the onset of symptoms.

The holding time function for ‘Visit’ reflects the distribution of times until
growth occurs given that the test is positive. The holding time function for
‘Growth’ is the distribution of times until the organism is isolated given than a
decision is made to isolate a specific organism. We modeled both these holding
times as exponential with means obtained from published reviews of blood-
culture testing [1, 11].

Finally, for individuals that made a health care visit, we simulated the syn-
drome assigned to the individual using probabilities that reflect the distribu-
tion of clinical presentations for inhalational anthrax reported in the literature
[11, 12]. As we consider only respiratory syndromes for surveillance, we modeled
only the probability of being assigned a respiratory syndrome in the prodromal
disease state, which we estimated at approximately 0.75 (Table 1).

2 Study Design

2.1 Generation of Simulated Signals

We generated 1,000 simulated outbreak signals at each release amount for a total
of 3,000 signals. To generate the simulated outbreaks for each release amount,

1These values result from the properties of the triangular distribution, which is defined by
three parameters: a, b, and c. In a right triangular distribution, b = c. The maximum point
density is 2 / (b - a) and the mean is (a + b + c) / 3.
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we first sampled an exposure grid and calculated the number infected by home
ZIP code. The next step was to select a set of disease and health-care utilization
parameters. We then generated a disease path for each infected individual, the
timing of visits to physicians for symptomatic individuals, the administrative
codes generated through visits, and the occurrence, timing and results of blood
culture testing.

Due to the large number of parameter values in the disease and health-
care utilization components of the simulation model, we used Latin hypercube
sampling (LHS) to select parameter values for each simulation run of these
components. LHS is an approach to sampling parameter values from a high-
dimensional parameter space in order to obtain estimates of output variables
that are more efficient and precise than would be obtained with simple random
sampling [16]. When specifying a simulation model there are K parameters.
A given run of the simulation model requires a value for each parameter, or
a set of parameter values X = {X1, . . . , XK}. Each parameter has a space
of possible values S = {S1, . . . , SK}. In LHS the space for each parameter is
partitioned into N intervals of probability size 1/N . The Cartesian product of
these intervals partitions S into NK cells, which form a hypercube. To obtain X
for a simulation run requires randomly sampling a partition for each parameter,
and then sampling a parameter value from within that partition, assuming that
values are uniformly distributed within a partition. Table 1 shows the parameter
value intervals used in the simulation study.

In order to reduce the variance between scenarios, we used the same 1,000
sets of disease and health-care utilization parameters, selected through LHS, for
each scenario. In other words, the first runs for each of the 3 release amounts all
used the first set of sampled parameters, the second runs all used the second set
of sampled parameters, and so on. Similarly, we sampled 1,000 exposure grids
and all 3 scenarios used the same 1,000 re-sample exposure plumes.2 Finally,
the same random number generator with the same seed value was used for
each scenario. We used a combined multiple recursive generator as proposed
and implemented by L’Ecuyer with the default initial seed [14]. This sampling
strategy was intended to improve the efficiency of the simulation and reduce the
variance of the output variables [13]. The net result is to facilitate comparison
of the results across the different scenarios.

2.2 Combination of Simulated Data with Baseline Data

We first defined a 330 day interval on the baseline data from January 19, 2003
until December 15, 2003 as possible starting dates for a simulated outbreak.
The gap at the beginning of the year was to allow a period for the detection
algorithm to initialize using test data, and the gap at the end of the year was
to ensure that injected outbreaks did not run off the end of the test data. We
then selected 1,000 random dates for injecting outbreaks. Each of the 330 dates

2The pattern of dispersion is constant and the number of spores scales linearly with amount
release. We therefore simulated a 1 kg release and scaled the results for the two other release
amounts.
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was used 3 times and ten dates were sampled randomly from the 330 dates to
be used a fourth time. All 100 dates were then shuffled randomly.

To inject the simulated outbreak signals for a release amount, we used the
following method. Each release amount had set of simulated outbreaks, O =
{O1, . . . , O1000}, and the set of randomly ordered dates, D = {D1, . . . , D1000}.
For outbreak j, j ∈ {1, . . . , 1000}, we selected Oj and Dj . The outbreak Oj is
a time series of counts, lasting n days and representing the visits for respira-
tory conditions from the day of the simulated release until the day of the peak
incidence of cases.

The outbreaks series Oj is an ordered set of values, Oj = {o(1), . . . , o(n)},
which we define to run from Dj until Dj + n − 1, or Oj = {o(Dj), . . . , o(Dj +
n − 1)}. The background time series is also an ordered set of values, B =
{b(1), . . . , b(m)}. For inject j, we extract a subset of the background time series
Bj = {b(Dj−g), . . . , b(Dj), . . . , b(Dj +n−1)}, where g is the length of the lead-
in gap, which is the amount of time in the inject series before the beginning of
the outbreak. We then define the inject series Ij = {i(Dj−g), . . . , i(Dj +n−1)},
with the entries in the series defined as,

i(k) =
{

b(k) + o(k) if k ≥ Dj and k < Dj + n
b(k) otherwise

In other words, the inject series is formed by adding the values of the out-
break series to the values of the background series, after aligning the two series
so that the first day of the outbreak series is added to day Dj in the background
series. We then applied the outbreak detection algorithm to each day in the in-
ject series to generate alarm values from day Dj − g to day Dj + n − 1. The
lead-in gap g = 16 + (3× 28) = 100 days, and the first 16 values were excluded
from the alarm series as they were required to initialize the temporal forecast
algorithm.3 This left an 84 day (approximately 3 months) initilization period.

2.3 Outbreak Detection Algorithm

We used an autoregressive seasonal integrated moving average (SARIMA) model
[3] to calculate one-step-ahead daily forecasts of respiratory syndrome counts
and then used a cumulative sum [19] to detect positive deviations in the forecast
residuals. Other researchers have used a similar approach to outbreak detection
in a surveillance setting [27].

To fit the SARIMA model, we used two years of data for respiratory syn-
drome visit counts (2001 to 2002, inclusive) and followed a procedure similar
to that described elsewhere [22]. This entailed subtracting the overall mean,
day-of-week means, month means, and holiday means from the original count
data to give a series centered on zero. We used trimmed means (alpha = 0.1)
for both day-of-week and month to minimize the influence of outliers. We then
assessed the temporal autocorrelation in this series and fit a SARIMA model
using a standard approach to model specification [3].

3The number of days excluded is determined by the number and order or terms in the
time-series model
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We evaluated the fit of the SARIMA model to the training (2001 to 2002)
and test data (2003) using the mean absolute percentage error (MAPE), defined
as

MAPE =
1
j

m∑

j=1

|µj − xj |
xj

,

where there are m days in the training interval, µj is the forecast value on
day j and xj is the observed value. After subtracting the overall mean and
means for day-of-week, month and holiday, the zero-centered series exhibited
temporal autocorrelation at short lags on the order of days, and cyclical lags of
order seven. We found that a SARIMA model (2,0,1) x (2,0,1)7 had the best fit
to the zero-centered series. One-step-ahead forecasts from the SARIMA model
resulted in a mean absolute percentage (MAPE) of 14.9% on the training data,
which implies that the forecast values were, on average, within 14.9% of the
true value. This fit is similar to or better than the fit reported by others using
the same algorithm and similar data [22].

To detect temporal aberrancies in the observed counts, we applied a cu-
mulative sum to the standardized forecast residual and declared an aberrancy
when the cumulative sum exceeded a threshold. We calculated the standard-
ized residual for each day as the observed total respiratory visit count minus
the one-step-ahead forecast from the SARIMA model, divided by the standard
error of the forecast. Standardization, or dividing the residual by the standard
error of the forecast, resulted in residuals with a standard normal distribution.

We then applied a one-sided cumulative sum to the standardized residuals
to detect a positive shift in the mean of the residual series:

St = max(0, St−1 + ((Xt − (µ0 + kσx))/σx)).

The cumulative sum requires four parameters: the series mean µ0, the series
standard deviation σx, the shift k, and the decision threshold h. The shift
specifies, in standard deviations, the minimum detectable change in the mean.
We set the shift at 0.5 standard deviations and declared an aberrancy for a
given day, j, when the cumulative sum crossed the decision threshold, or

A(h)j =
{

1 if Sj > h
0 otherwise.

We varied h between 0 and 10 to determine the outbreak detection perfor-
mance over a range of thresholds.

2.4 Evaluation of Outbreak Detection Performance

2.4.1 Sensitivity

Sensitivity is the probability of an alarm given an outbreak, or

Sensitivity = P (A|O) =
n(A,O)
n(O)

,
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where n(O) is the number of outbreaks and n(A,O) is the number of outbreaks
during which at least one alarm sounded. We calculated sensitivity for detecting
an outbreak following a given release amount at a decision threshold h as:

Se(h) =
1
n

n∑

i=1

min(1,

mi∑

j=1

A(h)ij),

where there are n simulation runs and simulated outbreak i has mi days
from onset to peak incidence. Note that sensitivity is computed using only the
outbreak intervals and no distinction is made as to when in the course of an
outbreak alarms occur.

2.4.2 Specificity

Specificity is the probability of no alarm given that there is no outbreak, or

Specificity = P (A|O) =
n(A, O)
n(O)

,

where n(O) is the number of days in the test data and n(A, O) is the number of
alarms when the algorithm is applied to the test data without any superimposed
outbreaks. We calculated specificity at a decision threshold h as:

Sp(h) =
1
m

m∑

j=1

A(h)j ,

where there are m days in the test data set. Note that specificity is calculated
using only non-outbreak data. We therefore assume that any alarm in the test
data without a superimposed outbreak is a false alarm.

2.4.3 Timeliness

Timeliness is the time between the onset of the outbreak and the first alarm
sounded during an outbreak. We calculated timeliness for a single simulated
outbreak as:

T (h) = min
j

(j : A(h)i = 1),

where there are mi days from the onset until the peak of an outbreak i and
timeliness is not defined if

∑mi

j=1 A(h)j = 0. Note that the mean timeliness for
a set of outbreaks is not necessarily monotonically increasing or decreasing with
the threshold. The reason for this potential variation in timeliness is that as the
thresholds changes, new outbreaks may be detected at the changed threshold.
The mean is re-calculated incorporating the timeliness from these additional
outbreaks, but there is no guarantee that the timeliness for these new outbreak
will be less than (or greater than) the mean timeliness before their inclusion.
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The effect of newly incorporated outbreaks is less at lower specificity, where
there are already a considerable number of outbreaks detected. At higher speci-
ficity, though, the derivative of the mean timeliness can change from negative
to positive as the threshold changes.

Timeliness for detection through clinical case-finding in a simulation run was
calculated as the minimum of the times to a positive blood culture diagnosis
for all positive blood cultures ordered for visits occurring in either disease state
which were assigned any syndrome.

2.4.4 Detection Benefit

Detection benefit is the potential gain in time to detection from using a new
detection method relative to a standard or existing method. For a new detection
method A and an existing method B, the benefit of A over B for a single
outbreak is calculated as the difference in the timeliness using the two methods,
or

DAB(h) = max(0, TB(h)− TA(h)).

The detection benefit is always greater than or equal to zero. Note that,
as with timeliness, the mean detection benefit is not necessarily monotonically
increasing or decreasing with the threshold.

Another measure of detection benefit is the proportion of times that method
A detects an outbreak before method B. For a single outbreak, this is equivalent
to calculating a binary measure in place of the continuous detection benefit, or

PAB(h) =
{

0 if DAB(h) = 0
1 if DAB(h) > 0.
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