Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 6—June 2008

Land Use and West Nile Virus Seroprevalence in Wild Mammals

Andrés Gómez*Comments to Author , A. Marm Kilpatrick†‡, Laura D. Kramer§, Alan P. Dupuis§, Joseph G. Maffei§, Scott J. Goetz¶, Peter P. Marra#**, Peter Daszak†, and A. Alonso Aguirre††
Author affiliations: *Columbia University, New York, New York, USA; †The Consortium for Conservation Medicine, New York; ‡University of California, Santa Cruz, California, USA; §New York State Department of Health, Slingerlands, New York; ¶Woods Hole Research Center, Falmouth, Massachusetts, USA; #Smithsonian Environmental Research Center, Edgewater, Maryland, USA; **National Zoological Park, Washington, DC, USA; ††Wildlife Trust, New York;

Main Article

Table 1

West Nile virus in wild mammals at 7 sites in Washington, DC, and Maryland, United States*

Capture site UI Age % WNV seroprevalence (no. samples)
Tamias striatus Sciurus carolinensis Didelphis virginiana Peromyscus leucopus Procyon lotor Rattus norvegicus
Baltimore, MD 91.2 J 0 (3)
A 64 (10) 50 (2)
Foggy Bottom, Washington, DC† 75.5 J 20 (11) 50 (2)
J‡ 43 (7)
A 52 (23) 50 (2) 50 (6)
A‡ 100 (6)
Fort Dupont Park, Washington, DC 38.8 J 100 (2) 20 (5)
A 75 (8) 60 (5) 50 (2)
Takoma Park, MD§ 50.4 J 0 (2) 71 (7)
J‡ 50 (6)
A 65 (20) 50 (6) 100 (2)
A‡ 100 (5)
Bethesda, MD¶ 41.5 J 0 (4) 100 (1)
A 22 (12) 67 (13)
Rock Creek Park, Rockville, MD# 27.8 J 0 (5) 0 (1)
A 16 (6) 30 (20) 0 (3) 100 (3)
SERC** 16.2 J 50 (4) 0 (11) 0 (1)
A 100 (1) 25 (4) 0 (6) 0 (1)

*Mammals caught from June 14, 2005, through September 17, 2005, except where noted. WNV, West Nile virus; UI, urbanization index; A, adult; J, juvenile.
†Also sampled house mouse, Mus musculus (1 WNV-positive adult, 1 WNV -negative juvenile).
‡Samples from April 2006.
§Also sampled big brown bat, Eptesicus fuscus (1 WNV-negative adult), little brown bat, Myotis lucifugus (1 WNV-positive adult).
¶Also sampled little brown bat, Myotis lucifugus (1 WNV-positive adult).
#Also sampled groundhog, Marmota monax (1 WNV-negative adult).
**SERC, Smithsonian Environmental Research Center, Edgewater, MD; also sampled domestic cat (1 WNV-negative juvenile), groundhog, Marmota monax (1 WNV-negative adult, 1 WNV-positive adult), eastern cottontail rabbit, Sylvilagus floridanus (1 WNV-negative adult).

Main Article

  1. Kilpatrick  AM, Kramer  LD, Campbell  SR, Alleyne  EO, Dobson  AP, Daszak  P. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis. 2005;11:4259.PubMedGoogle Scholar
  2. Dietrich  G, Montenieri  JA, Panella  NA, Langevin  S, Lasater  SE, Klenk  K, Serologic evidence of West Nile virus infection in free-ranging mammals, Slidell, Louisiana, 2002. Vector Borne Zoonotic Dis. 2005;5:28892. DOIPubMedGoogle Scholar
  3. Root  JJ, Hall  JS, McLean  RG, Marlenee  NL, Beaty  BJ, Gansowski  J, Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am J Trop Med Hyg. 2005;72:62230.PubMedGoogle Scholar
  4. Andreadis  TG, Anderson  JF, Vossbrinck  CR, Main  AJ. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis. 2004;4:36078. DOIPubMedGoogle Scholar
  5. Goetz  SJ, Jantz  CA, Prince  SD, Smith  AJ, Wright  R, Varlyguin  D. Integrated analysis of ecosystem interactions with land use change: the Chesapeake Bay watershed. In: DeFries RS, Asner GP, Houghton RA, editors. Ecosystems and land use change. Washington: American Geophysical Union; 2004. p. 263–75.
  6. Kunz  TH, Wemmer  C, Hayssen  V. Sex, age and reproductive condition of mammals. In: Wilson DE, Russell Cole F, Nichols JD, Rudran R, Foster MS, editors. Measuring and monitoring biological diversity standard methods for mammals. Washington: Smithsonian Institution Press; 1996.
  7. Kilpatrick  AM, Daszak  P, Jones  MJ, Marra  PP, Kramer  LD. Host heterogeneity dominates West Nile virus transmission. Proc R Soc Lond B Biol Sci. 2006;273:232733. DOIGoogle Scholar
  8. Calisher  CH, Karabatsos  N, Dalrymple  JM, Shope  RE, Porterfield  JS, Westaway  EG, Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol. 1989;70:3743.PubMedGoogle Scholar
  9. Kilpatrick  AM, Kramer  LD, Jones  MJ, Marra  PP, Daszak  PBB. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006;4:e8210. DOIGoogle Scholar
  10. Root  JJ, Oesterle  PT, Sullivan  HJ, Hall  JS, Marlenee  NL, McLean  RG, Short report: fox squirrel (Sciurus niger) associations with West Nile virus. Am J Trop Med Hyg. 2007;76:7824.PubMedGoogle Scholar
  11. Docherty  DE, Samuel  MD, Nolden  CA, Egstad  KF, Griffin  KM. West Nile virus antibody prevalence in wild mammals, Wisconsin. Emerg Infect Dis. 2006;12:19824.PubMedGoogle Scholar
  12. Bentler  KT, Hall  JS, Root  JJ, Klenk  K, Schmit  B, Blackwell  BF, Serologic evidence of West Nile virus exposure in North American mesopredators. Am J Trop Med Hyg. 2007;76:1739.PubMedGoogle Scholar
  13. Platt  KB, Tucker  BJ, Halbur  PG, Tiawsirisup  S, Blitvich  BJ, Fabiosa  FG, West Nile virus viremia in eastern chipmunks (Tamias striatus) sufficient for infecting different mosquitoes. Emerg Infect Dis. 2007;13:8317.PubMedGoogle Scholar
  14. Molaei  G, Andreadis  TA, Armstrong  PM, Anderson  JF, Vossbrinck  CR. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis. 2006;12:46874.PubMedGoogle Scholar
  15. Hamer  GL, Kitron  UD, Brawn  JD, Loss  SR, Ruiz  MO, Goldberg  TL, Culex pipiens (Diptera:Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol. 2008;45:1258. DOIPubMedGoogle Scholar

Main Article

Page created: July 09, 2010
Page updated: July 09, 2010
Page reviewed: July 09, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.