Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 6—June 2009

Changes in Fluoroquinolone-Resistant Streptococcus pneumonia after 7-Valent Conjugate Vaccination, Spain

Adela G. de la CampaComments to Author , Carmen Ardanuy, Luz Balsalobre, Emilio Pérez-Trallero, Jose M. Marimón, Asunción Fenoll, and Josefina Liñares
Author affiliations: Instituto de Salud Carlos III, Madrid, Spain (A.G. de la Campa, L. Balsalobre, A. Fenoll); Ciber Enfermedades Respiratorias, Mallorca, Spain (A.G. de la Campa, C. Ardanuy, L. Balsalobre, E. Pérez-Trallero, J. M. Marimón, J. Liñares); Hospital Universitary de Bellvitge, Barcelona, Spain (C. Ardanuy, J. Liñares); Hospital Donostia, San Sebastian, Spain (E. Pérez-Trallero, J.M. Marimón)

Main Article

Table 1

Comparison of 2 surveillance studies on ciprofloxacin-resistant Streptococcus pneumoniae isolates in Spain, 2002 and 2006*

Characteristic No. ciproflaxin resistant/no. isolates (%)
p value
2002 2006
Ciproflaxin resistance
Global 75/2,882 (2.6) 98/4,215 (2.3) NS
Low-level (MICs 4–8 μg/mL) 14/75 (18.7) 30/98 (30.6) NS
High-level (MICs >16 μg/mL) 61/75 (81.3) 68/98 (69.4) NS
In persons <15 years of age 0/978 (0) 2/1,446 (0.14) NS
In persons 15–64 years of age 22/1,166 (1.9) 34/1,455 (2.3) NS
In persons >64 years of age 53/738 (7.2) 62/1,314 (4.7) 0.02
PCV7 serotypes
49/75 (65.3)
35/98 (35.7)
Other antimicrobial drug resistance No. resistant/no. ciproflaxin-resistant isolates (%)
Penicillin MIC >0.12 μg/mL 55/75 (73.3) 44/98 (44.9) <0.001
Erythromycin MIC >0.5 μg/mL 53/75 (70.7) 53/98 (54.1) 0.03
Clindamycin MIC >1 μg/mL 47/75 (62.7) 45/98 (45.9) 0.03
Chloramphenicol MIC >8 μg/mL 33/75 (44.0) 11/98 (11.2) <0.001
Tetracycline MIC >4 μg/mL 52/75 (69.3) 39/98 (39.8) <0.001
Cotrimoxazole MIC >4/76 μg/mL†
51/75 (68.0)
47/98 (47.8)
Multidrug resistance (>3 drugs) 55/75 (73.3) 48/98 (49.0) <0.001

*NS, not significant; PCV7, 7-valent conjugate pneumococcal vaccine. Ciproflaxin resistance is defined by Chen et al. (30) as an MIC >4 μg/mL.
†MIC is 4 μg/mL for trimethoprim and 76 μg/mL for sulfamethoxazole.

Main Article

  1. Jacobs  MR, Felmingham  D, Appelbaum  PC, Grüneberg  RN. the Alexander Project Group. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother. 2003;52:22946. DOIPubMedGoogle Scholar
  2. Mandell  LA, Wunderink  RG, Anzueto  A, Bartlett  JG, Campbell  GD, Dean  NC, Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):S2772. DOIPubMedGoogle Scholar
  3. Stanhope  MJ, Walsh  SL, Becker  JA, Italia  MJ, Ingraham  KA, Gwynn  MN, Molecular evolution perspectives on intraspecific lateral DNA transfer of topoisomerase and gyrase loci in Streptococcus pneumoniae, with implications for fluoroquinolone resistance development and spread. Antimicrob Agents Chemother. 2005;49:431526. DOIPubMedGoogle Scholar
  4. Balsalobre  L, Ferrándiz  MJ, Liñares  J, Tubau  F, de la Campa  AG. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae. Antimicrob Agents Chemother. 2003;47:207281. DOIPubMedGoogle Scholar
  5. Bast  DJ, de Azevedo  JCS, Tam  TY, Kilburn  L, Duncan  C, Mandell  LA, Interspecies recombination contributes minimally to fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2001;45:26314. DOIPubMedGoogle Scholar
  6. Yokota  S, Sato  K, Kuwahara  O, Habadera  S, Tsukamoto  N, Ohuchi  H, Fluoroquinolone-resistant Streptococcus pneumoniae occurs frequently in elderly patients in Japan. Antimicrob Agents Chemother. 2002;46:33115. DOIPubMedGoogle Scholar
  7. Ferrándiz  MJ, Fenoll  A, Liñares  J, de la Campa  AG. Horizontal transfer of parC and gyrA in fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 2000;44:8407. DOIPubMedGoogle Scholar
  8. Brenwald  NP, Gill  MJ, Wise  R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1998;42:20325.PubMedGoogle Scholar
  9. Janoir  C, Zeller  V, Kitzis  M-D, Moreau  NJ, Gutmann  L. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother. 1996;40:27604.PubMedGoogle Scholar
  10. Muñoz  R, de la Campa  AG. ParC subunit of DNA topoisomerase IV of Streptococcus pneumoniae is a primary target of fluoroquinolones and cooperates with DNA gyrase A subunit in forming resistance phenotype. Antimicrob Agents Chemother. 1996;40:22527.PubMedGoogle Scholar
  11. Tankovic  J, Perichon  B, Duval  J, Courvalin  P. Contribution of mutations in gyrA and parC genes to fluoroquinolone resistance of mutants of Streptococcus pneumoniae obtained in vivo and in vitro. Antimicrob Agents Chemother. 1996;40:250510.PubMedGoogle Scholar
  12. Pan  X-S, Ambler  J, Mehtar  S, Fisher  LM. Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. Antimicrob Agents Chemother. 1996;40:23216.PubMedGoogle Scholar
  13. Fernández-Moreira  E, Balas  D, González  I, de la Campa  AG. Fluoroquinolones inhibit preferentially Streptococcus pneumoniae DNA topoisomerase IV than DNA gyrase native proteins. Microb Drug Resist. 2000;6:25967. DOIPubMedGoogle Scholar
  14. Houssaye  S, Gutmann  L, Varon  E. Topoisomerase mutations associated with in vitro selection of resistance to moxifloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2002;46:27125. DOIPubMedGoogle Scholar
  15. de la Campa  AG, Ferrándiz  MJ, Tubau  F, Pallarés  R, Manresa  F, Liñares  J. Genetic characterization of fluoroquinolone-resistant Streptococcus pneumoniae strains isolated during ciprofloxacin therapy from a patient with bronchiectasis. Antimicrob Agents Chemother. 2003;47:141922. DOIPubMedGoogle Scholar
  16. Adam  HJ, Schurek  KN, Nichol  KA, Hoban  CJ, Baudry  TJ, Laing  NM, Molecular characterization of increasing fluoroquinolone resistance in Streptococcus pneumoniae isolates in Canada, 1997 to 2005. Antimicrob Agents Chemother. 2007;51:198207. DOIPubMedGoogle Scholar
  17. Morrissey  I, Colclough  A, Northwood  J. TARGETed surveillance: susceptibility of Streptococcus pneumoniae isolated from community-acquired respiratory tract infections in 2003 to fluoroquinolones and other agents. Int J Antimicrob Agents. 2007;30:34551. DOIPubMedGoogle Scholar
  18. Whitney  CG, Farley  MM, Hadler  J, Harrison  LH, Bennett  NM, Lynfield  R, Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med. 2003;348:173746. DOIPubMedGoogle Scholar
  19. Kyaw  MH, Lynfield  R, Schaffner  W, Craig  AS, Hadler  J, Reingold  A, Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354:145563. DOIPubMedGoogle Scholar
  20. Beall  B, McEllistrem  MC, Gertz  RE Jr, Wedel  S, Boxrud  DJ, González  AL, Pre- and postvaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. J Clin Microbiol. 2006;44:9991017. DOIPubMedGoogle Scholar
  21. Muñoz-Almagro  C, Jordan  I, Gene  A, Latorre  C, García-García  JJ, Pallarés  R. Emergence of invasive pneumococcal disease caused by nonvaccine serotypes in the era of 7-valent conjugate vaccine. Clin Infect Dis. 2008;46:17482. DOIPubMedGoogle Scholar
  22. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Eighteenth informational supplement. CLSI document M100–S18. Wayne (PA): The Institute; 2008.
  23. Ferrándiz  MJ, Oteo  J, Aracil  B, Gómez-Garcés  JL, de la Campa  AG. Drug efflux and parC mutations are involved in fluoroquinolone resistance in viridans group streptococci. Antimicrob Agents Chemother. 1999;43:25203.PubMedGoogle Scholar
  24. de la Campa  AG, Balsalobre  L, Ardanuy  C, Fenoll  A, Pérez-Trallero  E, Liñares  J. Fluoroquinolone resistance in penicillin-resistant Streptococcus pneumoniae clones, Spain. Emerg Infect Dis. 2004;10:17519.PubMedGoogle Scholar
  25. Balsalobre  L, de la Campa  AG. Fitness of Streptococcus pneumoniae fluoroquinolone-resistant strains with topoisomerase IV recombinant genes. Antimicrob Agents Chemother. 2008;52:82230. DOIPubMedGoogle Scholar
  26. McGee  L, McDougal  L, Zhou  J, Spratt  BG, Tenover  FC, George  R, Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol. 2001;39:256571. DOIPubMedGoogle Scholar
  27. Tenover  FC, Arbeit  R, Goering  RV, Mickelsen  PA, Murray  BE, Persing  DH, Interpreting chromosomal DNA restriction patterns produced by pulse-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33:22339.PubMedGoogle Scholar
  28. Enright  MC, Spratt  BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology. 1998;144:304960. DOIPubMedGoogle Scholar
  29. González  I, Georgiou  M, Alcaide  F, Balas  D, Liñares  J, de la Campa  AG. Fluoroquinolone resistance mutations in the parC, parE, and gyrA genes of clinical isolates of viridans group streptococci. Antimicrob Agents Chemother. 1998;42:27928.PubMedGoogle Scholar
  30. Chen  DK, McGeer  A, de Azavedo  JC, Low  DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. N Engl J Med. 1999;341:2339. DOIPubMedGoogle Scholar
  31. Pérez-Trallero  E, Marimón  JM, Iglesias  L, Larruskain  J. Fluoroquinolone and macrolide treatment failure in pneumococcal pneumonia and selection of multidrug-resistant isolates. Emerg Infect Dis. 2003;9:115962.PubMedGoogle Scholar
  32. Pérez-Trallero  E, Marimón  JM, González  A, Ercibengoa  M, Larruskain  J. In vivo development of high-level fluoroquinolone resistance in Streptococcus pneumoniae in chronic obstructive pulmonary disease. Clin Infect Dis. 2005;41:5604. DOIPubMedGoogle Scholar
  33. de Cueto  M, Rodríguez  JM, Soriano  MJ, López-Cerero  L, Venero  J, Pascual  A. Fatal levofloxacin failure in treatment of a bacteremic patient infected with Streptococcus pneumoniae with a preexisting parC mutation. J Clin Microbiol. 2008;46:155860. DOIPubMedGoogle Scholar
  34. Reinert  RR, Reinert  S, van der Linden  M, Cil  MY, Al-Lahham  A, Appelbaum  P. Antimicrobial susceptibility of Streptococcus pneumoniae in eight European countries from 2001 to 2003. Antimicrob Agents Chemother. 2005;49:290313. DOIPubMedGoogle Scholar
  35. Liñares  J, de la Campa  AG, Pallarés  R. Fluoroquinolone resistance in Streptococcus pneumoniae. N Engl J Med. 1999;341:15467. DOIPubMedGoogle Scholar
  36. Pérez-Trallero  E, García-Arenzana  JM, Jiménez  JA, Peris  A. Therapeutic failure and selection of resistance to quinolones in a case of pneumococcal pneumonia treated with ciprofloxacin. Eur J Clin Microbiol Infect Dis. 1990;9:9056. DOIPubMedGoogle Scholar
  37. Lexau  CA, Lynfield  R, Danila  R, Pilishvili  T, Facklam  R, Farley  MM, Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA. 2005;294:204351. DOIPubMedGoogle Scholar
  38. Ardanuy  C, Tubau  F, Pallarés  R, Calatayud  L, Domínguez  MA, Rolo  D, Epidemiology of invasive pneumococcal disease among adult patients in Barcelona before and after pediatric 7-valent conjugate vaccine introduction, 1997–2007. Clin Infect Dis. 2009;48:5764. DOIPubMedGoogle Scholar
  39. Murray  TS, Baltimore  RS. Pediatric uses of fluoroquinolone antibiotics. Pediatr Ann. 2007;36:33642.PubMedGoogle Scholar
  40. Rozen  DE, McGee  L, Levin  BR, Klugman  KP. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2007;51:4126. DOIPubMedGoogle Scholar

Main Article

Page created: December 08, 2010
Page updated: December 08, 2010
Page reviewed: December 08, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.