Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 7—July 2011

Antibody to Arenaviruses in Rodents, Caribbean Colombia

On This Page
Article Metrics
citations of this article
EID Journal Metrics on Scopus

Cite This Article

To the Editor: The ≈20 recognized arenaviruses in the Americas are hosted by rodents of the family Cricetidae; 1 exception may be hosted by a bat (genus Artibeus, family Phyllostomidae) (1). Pichindé virus, hosted by Oryzomys albigularis, was described from animals in the Pichindé Valley near Cali, Colombia (2), and antibody reactive to Pichindé virus was found in 2 of 82 serum samples from humans in the same area. No studies of arenavirus infection in rodents or humans have been conducted in Colombia since 1971. Although Pichindé virus is not associated with human disease, Guanarito virus, which is hosted by Zygodontomys brevicauda, the short-tailed cane mouse (3,4), causes Venezuelan hemorrhagic fever in the Venezuelan state of Portuguesa (5). This state borders on Colombia, and Z. brevicauda is a common species in Caribbean Colombia. Our aim was to determine the prevalence of antibody to arenaviruses among wild rodents in this region.

During November 1, 2008–June 10, 2009, we trapped 322 rodents in 3 rural localities in the Department of Córdoba, Colombia (Monteria, Vereda El Escondido, 8°34.183′N, 75°42.776′W; Sahagun, Vereda Las Llanadas, 8°56.533′N, 75°20.909′W; and Lorica, Colegio Instituto Técnico Agrícola, 9°24.067′N, 075°75.707′W). The landscape at the study sites is dominated by tropical savanna, small patches of forest, and cultivated land. Live-capture traps were set in a variety of habitats at each locality, and captured rodents were processed according to methods by Mills et al. (6). Rodents were anesthetized, and blood (by cardiac puncture) and tissue (liver, lung, spleen, hearty, kidney) samples were collected into individual cryovials, placed in liquid nitrogen in the field, and transferred to freezers and stored at –80°C at the Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Montería, Colombia. Rodent species were identified on the basis of morphologic analyses of formalin-fixed carcasses; chromosomal data and mitochondrial DNA sequencing of the cytochrome b gene were used to confirm identification of most antibody-positive animals. Alcohol-preserved voucher specimens are archived at the Museum of Texas Tech University (Lubbock, TX, USA).

Blood samples were tested for arenavirus immunoglobulin (Ig) G by indirect immunofluorescent antibody assays. Guanarito and Pichindé virus–infected Vero E6 cells were used as antigens on spot slides. The secondary antibody was a fluorescein-conjugated goat, antimouse IgG. Serum samples were screened at a dilution of 1:10 and endpoint titers were measured by using serial 2-fold dilutions (1:10–1:320) (7). Attempts to amplify viral RNA in tissues by reverse transcription PCR were unsuccessful.

We collected 210 sigmodontine rodents of 3 species: 181 Z. brevicauda, 28 Oligoryzomys fulvescens, and 1 Oecomys concolor. Eleven serum samples, 10 from Z. brevicauda and 1 from O. fulvescens rodents, had detectable arenavirus antibody. Three Z. brevicauda rodent samples had antibody reactive to both Pichindé and Guanarito virus, and 7 more were positive for either Pichindé or Guanarito arenaviruses (Table).

We used only 2 viral antigens in our screening belonging to the 2 viruses that are either known to occur in Colombia (Pichindé virus) or known to be hosted by species that we captured (Guanarito virus). Among the 10 Z. brevicauda samples with detectable antibody, 5 reacted only to Pichindé virus antigen or their antibody titer to Pichindé virus was at least 4-fold higher than their titer to Guanarito virus (Table), suggesting those rodents were infected with Pichindé or a closely related virus. Additional studies, including isolation and sequencing are needed to definitively identify this virus.

Surprisingly, only 2 Z. brevicauda rodents (1.1%) had antibody only to Guanarito virus or had a 4-fold greater titer to Guanarito virus, much lower than the 15% antibody prevalence in the same species in the Venezuelan hemorrhagic fever–endemic area, Portuguesa State, Venezuela (5). Our testing protocols differed from the earlier study, and we have not definitively identified Guanarito virus in those 3 rodents; nevertheless, this low prevalence might help explain the absence of Venezuelan hemorrhagic fever in Colombia, although inadequate surveillance is a second possible explanation.

The single antibody-positive O. fulvescens rodent had a low antibody titer only to Pichindé virus. This apparent 4% antibody prevalence is based on only 28 mice. The significance of this finding is not clear but may represent spillover or an undescribed arenavirus specific to the species O. fulvescens. Again, additional studies are needed.

Our results demonstrate the presence of >1 arenaviruses circulating among common rodent hosts in Caribbean Colombia. We emphasize that many New World arenaviruses are likely cross-reactive to the antigens we used; recovery and sequencing of viral RNA will be essential to fully characterize these viruses. Hemorrhagic fever of arenaviral origin should be included in the differential diagnosis of tropical fevers, at least in our study region. As the human population of the rural Department of Córdoba and adjacent areas of the Caribbean coast of Colombia continues to increase, the potential for arenavirus-related disease could become a public health concern.



This study was supported by grant CIUC FMV0406-1120222 from the Universidad de Cordoba.


Salim Mattar, Camilo Guzmán, Justiniano Arrazola, Ella Soto, José Barrios, Noemí Pini, Silvana Levis, Jorge Salazar-BravoComments to Author , and James N. Mills
Author affiliations: Author affiliations: Universidad de Córdoba, Montería, Colombia (S. Mattar, C. Guzmán, J. Arrazola, E. Soto, J. Barrios); Instituto Nacional de Enfermedades Virales Humanas “Dr. Julio I Maiztegui,” Pergamino, Argentina (N. Pini, S. Levis); Texas Tech University, Lubbock, Texas, USA (J. Salazar-Bravo); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J. Mills)



  1. Salazar-Bravo  J, Ruedas  LA, Yates  TL. Mammalian reservoirs of arenaviruses. Curr Top Microbiol Immunol. 2002;262:2563.PubMedGoogle Scholar
  2. Trapido  H, SanMartín  C. Pichindé virus a new virus of the Tacaribe group from Colombia. Am J Trop Med Hyg. 1971;20:63141.PubMedGoogle Scholar
  3. Fulhorst  CF, Bowen  MD, Salas  RA, Duno  G, Utrera  A, Ksiazek  TG, Natural rodent host associations of Guanarito and Pirital viruses (family Arenaviridae) in central Venezuela. Am J Trop Med Hyg. 1999;61:32530.PubMedGoogle Scholar
  4. Fulhorst  CF, Cajimat  MNB, Milazzo  ML, Paredes  H, de Manzione  N, Salas  RA, Genetic diversity between and within the arenavirus species indigenous to western Venezuela. Virology. 2008;378:20513. DOIPubMedGoogle Scholar
  5. Salas  R, de Manzione  N, Tesh  RB, Rico-Hesse  R, Shope  RE, Betancourt  A, Venezuelan haemorrhagic fever. Lancet. 1991;338:10336. DOIPubMedGoogle Scholar
  6. Mills  JN, Yates  T, Childs  JE, Parmenter  RR, Ksiazek  TG, Rollin  PE, Guidelines for working with rodents potentially infected with hantavirus. J Mammal. 1995;76:71622. DOIGoogle Scholar
  7. Bennett  SG, Milazzo  ML, Webb  JP Jr, Fulhorst  CF. Arenavirus antibody in rodents indigenous to coastal southern California. Am J Trop Med Hyg. 2000;62:62630.PubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid1707.101961

Related Links


Table of Contents – Volume 17, Number 7—July 2011

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Jorge Salazar-Bravo, Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA

Send To

10000 character(s) remaining.


Page created: August 18, 2011
Page updated: August 18, 2011
Page reviewed: August 18, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.