Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 17, Number 9—September 2011

Tubulinosema sp. Microsporidian Myositis in Immunosuppressed Patient

Article Metrics
citations of this article
EID Journal Metrics on Scopus
Maria M. ChoudharyComments to Author , Maureen G. Metcalfe, Kathryn Arrambide, Caryn Bern, Govinda S. Visvesvara, Norman J. Pieniazek, Rebecca D. Bandea, Marlene DeLeon-Carnes, Patricia Adem, Moaz M. Choudhary, Sherif R. Zaki, and Musab U. Saeed
Author affiliations: Author affiliations: Cleveland Clinic Foundation, Cleveland, Ohio, USA (Maria M. Choudhary); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M.G. Metcalfe, C. Bern, G.S. Visvesvara, N.J. Pieniazek, R.D. Bandea, M. DeLeon-Carnes, P. Adem, S.R. Zaki); Southern Illinois University, Quincy, Illinois, USA (K. Arrambide, Moaz M. Choudhary, M.U. Saeed)

Cite This Article


The Phylum Microsporidia comprises >1,200 species, only 15 of which are known to infect humans, including the genera Trachipleistophora, Pleistophora, and Brachiola. We report an infection by Tubulinosema sp. in an immunosuppressed patient.

Initially designated as primitive eukaryotic protozoa, the microsporidia are now classified as fungi (1,2) with >1,200 known species. The ribosomes of microsporidia resemble prokaryotic ribosomes in terms of size but lack a 5.8S subunit (3). The microsporidia infect many different animals and insects, but human infections were rarely reported before the HIV/AIDS epidemic when Enterocytozoon bieneusi was shown to be a major cause of diarrhea in patients with low CD4+ lymphocyte counts (4). Since then, 14 other species of microsporidia have been reported to infect the human gastrointestinal tract, eye, or muscle and to cause disseminated infection, most commonly in immunocompromised hosts (512). We report an infection by Tubulinosema sp. in an immunosuppressed patient.

The Study

Our patient was a 67-year-old woman with known high-grade non-Hodgkin lymphoma since 1993 and chronic lymphocytic leukemia since 2003. She had received multiple courses of chemotherapy, including fludarabine, cyclophosphamide, rituximab, pentostatin, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone, and alemtuzumab. During 2004 through 2008, she had multiple hospitalizations with neutropenic complications. Her chemotherapy regimen was switched to bendamustine and cyclophosphamide in January 2009 because of persistent neutropenia.

In February 2009, the patient was hospitalized with fever and abdominal pain. No clear infectious etiology could be ascertained despite an extensive workup; she was treated with cefepime, vancomycin, and metronidazole without any improvement. At the end of the antimicrobial drug course, she noticed 2 painful white lesions on her tongue and also had fever and chills. The lesions consisted of two 1.0- × 1.5-cm nodules on the anterior aspect of the tongue. These were initially treated as oral thrush with fluconazole without resolution. At the same time, the patient experienced a relapse of herpes zoster that was treated with valacyclovir.

In April 2009, biopsy samples of the lesions were obtained. Results of the initial histopathology report were consistent with an inflamed granulation type tissue with collections of epithelioid histiocytes resembling naked-type granulomatous changes. Numerous intracellular microorganisms were seen in the myocytes. Culture for bacteria and fungi was negative and culture for microsporidia was not attempted. Serologic test results for Toxoplasma gondii and Trypanosoma cruzi were also negative.

Paraffin-fixed tissue and slides were sent to the laboratories of the Parasitic Diseases Branch and the Infectious Disease Pathology Branch, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA. Detailed results of the evaluations performed at CDC are given below. On the basis of a preliminary diagnosis of microsporidia, the patient was treated with albendazole 400 mg daily without any improvement.

In June 2009, the patient sought treatment for decreased urine output and acute kidney injury attributed to acute interstitial nephritis of unknown etiology based on eosinophils in her urine. A renal biopsy showed lymphocytic infiltrates negative for CD5 and CD20 and positive for paired box gene-5 and p53 expression, consistent with Richter’s transformation of the kidney. She was also found to have anterior mediastinal lymphadenopathy, interval increase in splenomegaly, ascites, pleural effusions, and bilateral interstitial infiltrates. Specimens from a bronchoscopy did not show any evidence of malignancy. Cultures were negative for bacteria and fungi. The patient died the next day. The family chose not to have an autopsy done. The cause of death was transformed chronic lymphocytic leukemia with acute renal failure as a contributory cause.

Figure 1

Thumbnail of Skeletal muscle tissue samples from a 67-year-old woman with Tubulinosema sp. infection, 2009. A) Hematoxylin and eosin stain shows inflamed fibers with mononuclear infiltrate (O). B) Warthin-Starry silver stain shows abundant clusters of ovoid, basophilic organisms (O) within the muscle fibers (M). Original magnifications ×1,000.

Figure 1. Skeletal muscle tissue samples from a 67-year-old woman with Tubulinosema sp. infection, 2009. A) Hematoxylin and eosin stain shows inflamed fibers with mononuclear infiltrate (O). B) Warthin-Starry silver stain shows abundant...

Muscle tissue after fixation was stained with hematoxylin and eosin, periodic acid–Schiff, mucicarmine, Grocott methenamine silver, Giemsa, Warthin-Starry silver, acid-fast, and Lillie-Twort Gram stains. Granulomatous inflammation with focal infiltrates by neutrophils and eosinophils was seen. Within the myofibrils, there were abundant clusters of small, ovoid, basophilic organisms (Figure 1, panel A) measuring 2 µm stained positive by Lillie-Twort Gram and Warthin-Starry stains (Figure 1, panel B). The organisms stained faintly with Giemsa and were negative by Grocott methenamine silver, periodic acid–Schiff, and mucicarmine stains.

Results of immunohistochemical analysis (immune alkaline phosphatase technique) were negative, and autoimmune histochemical analysis was not performed. The primary antibodies used in the tests were an antibody against T. cruzi and an antibody against T. gondii. Appropriate positive and negative controls were run in parallel.

Figure 2

Thumbnail of Spores of Tubulinosema sp. from a 67-year-old woman with Tubulinosema sp. infection, 2009. A) Electron micrograph of numerous spores in various stages in muscle tissue. Scale bar = 2 μm. B) An immature spore showing an electron-dense exospore (Ex) and a thick electron-lucent endospore (En), which together compose the spore wall. Diplokaryon (DK), posterior vacuole (PV), ribosomes in crystalline clusters as polyribosomes (PR) along with the polaroplast and polar filaments (PF) consti

Figure 2. Spores of Tubulinosema sp. from a 67-year-old woman with Tubulinosema sp. infection, 2009. A) Electron micrograph of numerous spores in various stages in muscle tissue. Scale bar = 2 μm. B)...

Electron microscopy at CDC revealed numerous spores but few developing stages (Figure 2, panel A). All stages were in direct contact with the host cell cytoplasm. The spores ranged from 1.4 to 2.4 μm in length and were characterized by an outer electron-dense exospore and a thick electron-lucent endospore. Within the endospore, a thin plasma membrane surrounded the polar filament coils and a polaroplast. These features are diagnostic characteristics of microsporidia. The endospore was considerably thinner near the anchoring disk. The polar filament had 11 coils arranged mostly in single rows, although in a few spores double rows were also seen. Three of the coils were slightly smaller than the others, which indicated the polar filaments are anisofilar (Figure 2, panel B). The polar filament coils measured 83.3–102 nm. At higher magnification, the polar filament coil exhibited a lucent ring around a dense core (Figure 2, panel C). A salient feature of the spore was the presence of a diplokaryotic nucleus with 2 nuclei closely opposed in a coffee bean–like appearance. The cytoplasm surrounding the nucleus was densely packed with ribosomes. Additional morphologic features included a posterior vacuole (Figure 2, panel B) and lamellar polaroplast consisting of tightly coiled membranes encircling the polar filament (Figure 2, panel D).

Molecular analysis was performed on a specimen of human muscle only. Taxonomically, the isolated spores’ small subunit of rRNA sequence on BLAST analysis ( was found to be 100% identical (within a 500-nt sequenced fragment) to Tubulinosema acridophagus (GenBank accession no. AF024658), which usually infects North American grasshoppers (Schistocerca americana and Melanoplus spp.). It was also 96% identical to that of Tu. ratisbonensis (GenBank accession no. AY695845) obtained from a Drosophila melanogaster fruit fly and to Tu. kingi (GenBank accession no. DQ019419 and L28966) obtained from a D. willistoni fruit fly (Table).


We report a case of microsporidian myositis caused by Tubulinosema sp. in a patient with chronic lymphocytic leukemia and subsequent Richter’s transformation. Franzen et al. in 2005 proposed a new genus and species (13), Tu. ratisbonensis, for a microsporidium that parasitizes the fruit fly D. melanogaster. Subsequently, phylogenetic analyses of ribosomal RNA sequences determined that Tu. ratisbonensis was similar to several species included in the genus Nosema (13). Two other species of Nosema (N. kingi and N. acridophagus), both parasites of insects fitting the generic description of Tubulinosema, were transferred to the new genus (13). On the basis of limited ultrastructural studies, the microsporidia described here resemble Tu. acridophagus, Tu. kingi, and Tu. ratisbonensis (Table). Moreover, PCR of formalin-fixed, paraffin-embedded tissue showed that it was closely related to Tu. acridophagus, a parasite of the fruit fly D. melanogaster, suggesting an insect source of this infection.

To the best of our knowledge, before this case microsporidia belonging to the genus Tubulinosema had not been associated with human infection. However, members of another genus Anncaliia (Brachiola), recently classified under the same family Tubulinosematidae as Tubulinosema, have been known to cause myositis and keratitis in humans (14). A. algerae is a well known parasite of mosquitoes and has also been described as causing infections in humans (15). Currently, microsporidia belonging to 8 genera are known to cause human infections (4). Therefore, clinicians managing immunodeficient patients who have fatigue, weakness, and other nonspecific symptoms, including unexplainable lesions, should consider microsporidiosis as a possible differential diagnosis.

Dr Choudhary is a second-year resident in internal medicine at the Cleveland Clinic Foundation in Cleveland, Ohio. Her research interests include transplant infections.



  1. Vossbrinck  CR, Maddox  JV, Friedman  S, Debrunner-Vossbrinck  BA, Woese  CR. Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature. 1987;326:4114. DOIPubMedGoogle Scholar
  2. Hirt  RP, Logsdon  JM Jr, Healy  B, Dorey  MW, Doolittle  WF, Embley  TM. Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A. 1999;96:5805. DOIPubMedGoogle Scholar
  3. Weiss  LM. Molecular phylogeny and diagnostic approaches to microsporodia. Contrib Microbiol. 2000;6:20935. DOIPubMedGoogle Scholar
  4. Didier  ES, Stovall  ME, Green  LC, Brindley  PJ, Sestak  K, Didier  PJ. Epidemiology of microsporidiosis: sources and modes of transmission. Vet Parasitol. 2004;126:14566. DOIPubMedGoogle Scholar
  5. Curry  A, Beeching  NJ, Gilbert  JD, Scott  G, Rowland  PL, Currie  BJ. Trachipleistophora hominis infection in the myocardium and skeletal muscle of a patient with AIDS. J Infect. 2005;51:e13944. DOIPubMedGoogle Scholar
  6. Weber  R, Bryan  RT, Schwartz  DA, Owen  RL. Human microsporidia infections. Clin Microbiol Rev. 1994;7:42661.PubMedGoogle Scholar
  7. Sax  PE, Rich  JD, Pieciak  WS, Trnka  YM. Intestinal microsporidiosis occurring in a liver transplant recipient. Transplantation. 1995;60:6178. DOIPubMedGoogle Scholar
  8. Rabodonirina  M, Bertocchi  M, Desportes-Livage  I, Cotte  L, Levrey  H, Piens  MA, Enterocytozoon bieneusi as a cause of chronic diarrhea in a heart-lung transplant recipient who was seronegative for human immunodeficiency virus. Clin Infect Dis. 1996;23:1147. DOIPubMedGoogle Scholar
  9. Gumbo  T, Hobbs  RE, Carlyn  C, Hall  G, Isada  CM. Microsporidia infection in transplant patients. Transplantation. 1999;67:4824. DOIPubMedGoogle Scholar
  10. Mohindra  AR, Lee  MW, Visvesvara  G, Moura  H, Parasuarman  R, Leitch  GJ, Disseminated microsporidiosis in a renal transplant recipient. Transpl Infect Dis. 2002;4:1027. DOIPubMedGoogle Scholar
  11. Bryan  RT. Schwrtz. Epidemiology of microsporidiosis. In: Wittner M, Weiss LM, editors. The microsporidia and microsporidiosis. Washington: American Society for Microbiology; 1999. p. 502–16.
  12. Deplazes  P, Mathis  A, Weber  R. Epidemiology and zoonotic aspects of microsporidia of mammals and birds. Contrib Microbiol. 2000;6:23660. DOIPubMedGoogle Scholar
  13. Franzen  C, Fischer  S, Schroeder  J, Schölmerich  J, Schneuwly  S. Morphological and molecular investigations of Tubulinosema ratisbonensis grn. nov., sp. nov. (Microsporidia: Tubulinosematidae fam. nov.), a parasite infecting a laboratory colony of Drosophila melanogaster (Diptera: Drosophilidae). J Eukaryot Microbiol. 2005;52:14152. DOIPubMedGoogle Scholar
  14. Coyle  CM, Weiss  LM, Rhodes  LV III, Cali  A, Takvorian  PM, Brown  DF, Fatal myositis due to the microsporidian Brachiola algerae, a mosquito pathogen. N Engl J Med. 2004;351:427. DOIPubMedGoogle Scholar
  15. Visvesvara  GS, Moura  H, Leitch  GJ, Schwartz  DA, Xiao  LX. Public health importance of Brachiola algerae – an emerging pathogen of humans. Folia Parasitol (Praha). 2005;52:8394.PubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid1709.101926

Table of Contents – Volume 17, Number 9—September 2011

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Maria M. Choudhary, Cleveland Clinic Foundation, Department of Internal Medicine, 9500 Euclid Foundation, NA10, Cleveland, OH 44195, USA

Send To

10000 character(s) remaining.


Page created: September 06, 2011
Page updated: September 06, 2011
Page reviewed: September 06, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.