Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 10—October 2012

Wild Birds and Urban Ecology of Ticks and Tick-borne Pathogens, Chicago, Illinois, USA, 2005–2010

Sarah A. HamerComments to Author , Tony L. Goldberg, Uriel D. Kitron, Jeffrey D. Brawn, Tavis K. Anderson, Scott R. Loss, Edward D. Walker, and Gabriel L. Hamer
Author affiliations: Michigan State University, East Lansing, Michigan, USA (S.A. Hamer, E.D. Walker, G.L. Hamer); Texas A&M University, College Station, Texas, USA (S.A. Hamer, G.L. Hamer); University of Wisconsin, Madison, Wisconsin, USA (T.L. Goldberg, T.K. Anderson); Emory University, Atlanta, Georgia, USA (U.D. Kitron); University of Illinois, Urbana, Illinois, USA (J.D. Brawn, S.R. Loss); and Smithsonian Migratory Bird Center, Washington, DC, USA (S.R. Loss)

Main Article

Table 3

Prevalence of Borrelia burgdorferi infection in ticks removed from birds, by site of origin and date of capture, southwest suburban Chicago, Illinois, USA, 2005–2010*

Tick species Larva
No. pools (no. larvae) % Infected (MIP) Birds with infected larvae, site, date No. tested % Infected (95% CI) Birds with infected nymphs, site, date IGS strain (RST group) ospC strain
Haemaphysalis leporispalustris 65 (277) 0 NA 34 2.9 (0.2–17.1) RWBL, SC site, 2007 Jun 6 NA NA
Ixodes dentatus 6 (17) 0 NA 0 NA NA NA NA
I. scapularis 6 (22) 16.7 (4.5) SWTH, WW site, 2006 May 23 6 50 (14.0–86.1) AMRO, 1 site, 2007 Jul 18; AMRO, PHN site, 2010 Jun 22; BLJA, PHN site, 2009 Jun 15 2 (2); 28 (3); 14 (2) H, T, A3

*MIP, minimum infection prevalence; IGS, B. burgdorferi 16S-23S rRNA intergenic spacer ribotype; RST, ribosomal spacer type 1, 2, or 3; ospC, inferred outer surface protein C allele based on linkages reported by Travinsky et al. (23); NA, not applicable; RWBL, Red-winged blackbird; SC, Saint Casimir Cemetery; SWTH, Swainson’s thrush; WW, Wolfe Wildlife Refuge; AMRO, American robin; PHN, Palos Hills Natural; BLJA, Blue jay.

Main Article

  1. Kilpatrick  AM, Chmura  AA, Gibbons  DW, Fleischer  RC, Marra  PP, Daszak  P. Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci U S A. 2006;103:1936873. DOIPubMedGoogle Scholar
  2. Rappole  JH, Hubálek  Z. Migratory birds and West Nile virus. J Appl Microbiol. 2003;94(Suppl):47S58S. DOIPubMedGoogle Scholar
  3. Peterson  AT, Andersen  MJ, Bodbyl-Roels  S, Hosner  P, Nyari  A, Oliveros  C, A prototype forecasting system for bird-borne disease spread in North America based on migratory bird movements. Epidemics. 2009;1:2409. DOIPubMedGoogle Scholar
  4. Keesing  F, Brunner  J, Duerr  S, Killilea  M, LoGiudice  K, Schmidt  K, Hosts as ecological traps for the vector of Lyme disease. Proc Biol Sci. 2009;276:39119. DOIPubMedGoogle Scholar
  5. Ginsberg  HS, Buckley  PA, Balmforth  MG, Zhioua  E, Mitra  S, Buckley  FG. Reservoir competence of native North American birds for the Lyme disease spirochete, Borrelia burgdorferi. J Med Entomol. 2005;42:4459. DOIPubMedGoogle Scholar
  6. Hamer  GL, Chaves  LF, Anderson  TK, Kitron  UD, Brawn  JD, Ruiz  MO, Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE. 2011;6:e23767. DOIPubMedGoogle Scholar
  7. Kurtenbach  K, De Michelis  S, Etti  S, Schafer  SM, Sewell  HS, Brade  V, Host association of Borrelia burgdorferi sensu lato—the key role of host complement. Trends Microbiol. 2002;10:749. DOIPubMedGoogle Scholar
  8. Bradley  CA, Altizer  S. Urbanization and the ecology of wildlife diseases. Trends Ecol Evol. 2007;22:95102. DOIPubMedGoogle Scholar
  9. Hamer  SA, Lehrer  E, Magle  SB. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in greater Chicago, Illinois. Zoonoses Public Health. 2012;59:35564. DOIPubMedGoogle Scholar
  10. Keesing  F, Belden  LK, Daszak  P, Dobson  A, Harvell  CD, Holt  RD, Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:64752. DOIPubMedGoogle Scholar
  11. Randolph  SE, Dobson  AD. Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology. 2012;139:84763. DOIPubMedGoogle Scholar
  12. Chomel  B. Tick-borne infections in dogs—an emerging infectious threat. Vet Parasitol. 2011;179:294301. DOIPubMedGoogle Scholar
  13. Dumler  JS, Choi  KS, Garcia-Garcia  JC, Barat  NS, Scorpio  DG, Garyu  JW, Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg Infect Dis. 2005;11:182834. DOIPubMedGoogle Scholar
  14. Telford  SR, Dawson  JE, Katavolos  P, Warner  CK, Kolbert  CP, Persing  DH. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci U S A. 1996;93:620914. DOIPubMedGoogle Scholar
  15. Barbour  AG, Fish  D. The biological and social phenomenon of Lyme disease. Science. 1993;260:16106. DOIPubMedGoogle Scholar
  16. Walk  JW, Ward  MP, Benson  TJ, Deppe  JL, Lischka  SA, Bailey  SD, Illinois birds: a century of change. Champaign (IL): Illinois Natural History Survey; 2010.
  17. Poucher  KL, Hutcheson  HJ, Keirans  JE, Durden  LA, Black  WC. Molecular genetic key for the identification of 17 Ixodes species of the United States (Acari: Ixodidae): a methods model. J Parasitol. 1999;85:6239. DOIPubMedGoogle Scholar
  18. Hamer  SA, Tsao  JI, Walker  ED, Hickling  GJ. Invasion of the Lyme disease vector Ixodes scapularis: implications for Borrelia burgdorferi endemicity. EcoHealth. 2010;7:4763. DOIPubMedGoogle Scholar
  19. Tsao  JI, Wootton  JT, Bunikis  J, Luna  MG, Fish  D, Barbour  AG. An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc Natl Acad Sci U S A. 2004;101:1815964. DOIPubMedGoogle Scholar
  20. Holden  K, Boothby  JT, Anand  S, Massung  RF. Detection of Borrelia burgdorferi, Ehrlichia chaffeensis, and Anaplasma phagocytophilum in ticks (Acari: Ixodidae) from a coastal region of California. J Med Entomol. 2003;40:5349. DOIPubMedGoogle Scholar
  21. Bunikis  J, Garpmo  U, Tsao  J, Berglund  J, Fish  D, Barbour  AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology. 2004;150:174155. DOIPubMedGoogle Scholar
  22. Travinsky  B, Bunikis  J, Barbour  AG. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg Infect Dis. 2010;16:114750. DOIPubMedGoogle Scholar
  23. Liveris  D, Gazumyan  A, Schwartz  I. Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol. 1995;33:58995.PubMedGoogle Scholar
  24. Hamer  SA, Hickling  GJ, Sidge  JL, Rosen  ME, Walker  ED, Tsao  JI. Diverse Borrelia burgdorferi strains in a bird tick cryptic cycle. Appl Environ Microbiol. 2011;77:19992007. DOIPubMedGoogle Scholar
  25. Diuk-Wasser  MA, Hoen  AG, Cislo  P, Brinkerhoff  R, Hamer  SA, Rowland  M, Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg. 2012;86:3207. DOIPubMedGoogle Scholar
  26. Jobe  DA, Nelson  JA, Adam  MD, Martin  SA. Lyme disease in urban areas, Chicago. Emerg Infect Dis. 2007;13:1799800. DOIPubMedGoogle Scholar
  27. Centers for Disease Control and Prevention. Summary of notifiable diseases. MMWR Morb Mortal Wkly Rep. 2011;58:1100.PubMedGoogle Scholar
  28. Weisbrod  AR, Johnson  RC. Lyme disease and migrating birds in the Saint Croix River Valley. Appl Environ Microbiol. 1989;55:19214.PubMedGoogle Scholar
  29. Ogden  NH, Lindsay  LR, Hanincova  K, Barker  IK, Bigras-Poulin  M, Charron  DF, Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl Environ Microbiol. 2008;74:178090. DOIPubMedGoogle Scholar
  30. Brinkerhoff  RJ, Bent  SJ, Folsom-O'Keefe  CM, Tsao  K, Hoen  AG, Barbour  AG, Genotypic diversity of Borrelia burgdorferi strains detected in Ixodes scapularis larvae collected from North American songbirds. Appl Environ Microbiol. 2010;76:82658. DOIPubMedGoogle Scholar
  31. Wormser  GP, Brisson  D, Liveris  D, Hanincova  K, Sandigursky  S, Nowakowski  J, Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198:135864. DOIPubMedGoogle Scholar
  32. Sonenshine  DE. Ticks of Virginia. Blacksburg (VA): Virginia Polytechnic Institute and State University, College of Agriculture and Life Sciences; 1979.
  33. Scott  JD, Lee  M-K, Fernando  K, Durden  LA, Jorgensen  DR, Mak  S, Detection of Lyme disease spirochete, Borrelia burgdorferi sensu lato, including three novel genotypes in ticks (Acari: Ixodidae) collected from songbirds (Passeriformes) across Canada. J Vector Ecol. 2010;35:12439. DOIPubMedGoogle Scholar
  34. Ogrzewalska  M, Uezu  A, Jenkins  CN, Labruna  MB. Effect of forest fragmentation on tick infestations of birds and tick infection rates by Rickettsia in the Atlantic forest of Brazil. EcoHealth. 2011;8:32031. DOIPubMedGoogle Scholar
  35. Apperson  CS, Engber  B, Nicholson  WL, Mead  DG, Engel  J, Yabsley  MJ, Tick-borne diseases in North Carolina: is “Rickettsia amblyommii” a possible cause of rickettsiosis reported as Rocky Mountain spotted fever? Vector Borne Zoonotic Dis. 2008;8:597606. DOIPubMedGoogle Scholar
  36. Ogrzewalska  M, Pacheco  RC, Uezu  A, Richtzenhain  LJ, Ferreira  F, Labruna  MB. Rickettsial infection in Amblyomma nodosum ticks (Acari: Ixodidae) from Brazil. Ann Trop Med Parasitol. 2009;103:41325. DOIPubMedGoogle Scholar
  37. Fornadel  CM, Zhang  X, Smith  JD, Paddock  CD, Arias  JR, Norris  DE. High rates of Rickettsia parkeri infection in Gulf Coast ticks (Amblyomma maculatum) and identification of “Candidatus Rickettsia andeanae” from Fairfax County, Virginia. Vector Borne Zoonotic Dis. 2011;11:15359. DOIPubMedGoogle Scholar
  38. Simberloff  D. The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst. 2009;40:81102. DOIGoogle Scholar

Main Article

Page created: September 14, 2012
Page updated: September 14, 2012
Page reviewed: September 14, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.