Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 11—November 2013
Dispatch

Two Novel Arenaviruses Detected in Pygmy Mice, Ghana

Karl C. Kronmann1Comments to Author , Shirley Nimo-Paintsil1, Fady Guirguis, Lisha C. Kronmann, Kofi Bonney, Kwasi Obiri-Danso, William Ampofo, Elisabeth Fichet-Calvet, and Elisabeth Fichet-Calvet.
Author affiliations: US Naval Medical Research Unit No. 3, Ghana Detachment, Accra, Ghana (K.C. Kronmann, S. Nimo-Paintsil, L.C. Kronmann); US Naval Medical Research Unit No. 3, Cairo, Egypt (F. Guirguis); Noguchi Memorial Institute for Medical Research, Legon, Ghana (K. Bonney, W. Ampofo, S. Nimo Paintsil); Kwame Nkrumah University of Science and Technology, Kumasi, Ghana (K. Obiri-Danso); Bernhard Nocht Institute of Tropical Medicine, Hamburg, Germany (E. Fichet-Calvet); Evolutionary Biology Group, University of Antwerp, Antwerp, Belgium (E. Fichet-Calvet)

Main Article

Figure 2

Phylogenetic trees depicting virus sequences found in rodents from the villages of Jirandogo and Natorduori, Ghana. Lineages of Lassa virus clade are indicated by Roman numerals on the right. For each virus, phylogenetic trees are shown for 3 genes: 2a, glycoprotein  gene (partial 1,034 bp), 2b, nucleoprotein  gene (partial 1,297 bp), and 2c, Polymerase gene (L partial, 340 bp). The analysis was performed using PhyML (11), with a general time reversible  nucleotide substitution model and 100 boo

Figure 2. . . Phylogenetic trees depicting virus sequences found in rodents from the villages of Jirandogo and Natorduori, Ghana. Lineages of Lassa virus clade are indicated by Roman numerals on the right. For each virus, phylogenetic trees are shown for 3 genes: 2a, glycoprotein gene (partial 1,034 bp), 2b, nucleoprotein gene (partial 1,297 bp), and 2c, Polymerase gene (L partial, 340 bp). The analysis was performed using PhyML (11), with a general time reversible nucleotide substitution model and 100 bootstrap replicates. Branches highly supported by PhyML are indicated with bootstrap values >50. Scale bars indicate nucleotide substitutions per site.

Main Article

References
  1. Fichet-Calvet  E, Rogers  DJ. Risk maps of Lassa fever in West Africa. PLoS Negl Trop Dis. 2009;3:e388 . DOIPubMedGoogle Scholar
  2. Macher  AM, Wolfe  MS. Historical Lassa fever reports and 30-year clinical update. Emerg Infect Dis. 2006;12:8357 . DOIPubMedGoogle Scholar
  3. Günther  S, Emmerich  P, Laue  T, Kuhle  O, Asper  M, Jung  A, Imported Lassa fever in Germany: molecular characterization of a new Lassa virus strain. Emerg Infect Dis. 2000;6:46676. DOIPubMedGoogle Scholar
  4. Briese  T, Paweska  JT, McMullan  LK, Hutchison  SK, Street  C, Palacios  G, Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathog. 2009;5:e1000455. DOIPubMedGoogle Scholar
  5. Monath  TP, Newhouse  VF, Kemp  GE, Setzer  HW, Cacciapuoti  A. Lassa virus isolation from Mastomys natalensis rodents during an epdemic in Sierra Leone. Science. 1974;185:2635 . DOIPubMedGoogle Scholar
  6. Lecompte  E, Fichet-Calvet  E, Daffis  S, Koulemou  K, Sylla  O, Kourouma  F, Mastomys natalensis and Lassa fever, West Africa. Emerg Infect Dis. 2006;12:19714. DOIPubMedGoogle Scholar
  7. Fichet-Calvet  E, Lecompte  E, Koivogui  L, Soropogui  B, Dore  A, Kourouma  F, Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector Borne Zoonotic Dis. 2007;7:11928. DOIPubMedGoogle Scholar
  8. Mills  JN, Childs  JE, Ksiazek  TG, Peters  CJ. Methods for trapping and sampling small mammals for virologic testing. Atlanta: Centers for Disease Control and Prevention; 1995.
  9. Demby  AH, Chamberlain  J, Brown  DW, Clegg  CS. Early diagnosis of Lassa fever by reverse transcription-PCR. J Clin Microbiol. 1994;32:2898903 .PubMedGoogle Scholar
  10. Vieth  S, Drosten  C, Lenz  O, Vincent  M, Omilabu  S, Hass  M, RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg. 2007;101:125364. DOIPubMedGoogle Scholar
  11. Ehichioya  DU, Hass  M, Becker-Ziaja  B, Ehimuan  J, Asogun  DA, Fichet-Calvet  E, Current molecular epidemiology of Lassa virus in Nigeria. J Clin Microbiol. 2011;49:115761. DOIPubMedGoogle Scholar
  12. Guindon  S, Dufayard  JF, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721 . DOIPubMedGoogle Scholar
  13. Safronetz  D, Lopez  JE, Sogoba  N, Traore  SF, Raffell  SJ, Fischer  ER, Detection of Lassa virus, Mali. Emerg Infect Dis. 2010;16:11236. DOIPubMedGoogle Scholar
  14. Bowen  MD, Rollin  PE, Ksiazek  TG, Hustad  HI, Bausch  DG, Demby  AH, Genetic diversity among Lassa virus strains. J Virol. 2000;74:69927004. DOIPubMedGoogle Scholar
  15. Coulibaly-N’Golo  D, Allali  B, Kouassi  SK, Fichet-Calvet  E, Becker-Ziaja  B, Rieger  T, Novel arenavirus sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d’Ivoire: implications for evolution of arenaviruses in Africa. PLoS ONE. 2011;6:e20893 . DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: October 31, 2013
Page updated: October 31, 2013
Page reviewed: October 31, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external