Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 12—December 2013
Research

Zoonotic Chlamydiaceae Species Associated with Trachoma, Nepal

Deborah DeanComments to Author , James Rothschild, Anke Ruettger, Ram Prasad Kandel, and Konrad Sachse
Author affiliations: Children's Hospital Oakland Research Institute, Oakland, California, USA (D. Dean, J. Rothschild); University of California, San Francisco, California, USA (D. Dean); University of California, Berkeley, California, USA (D. Dean); Friedrich-Loeffler-Institut, Jena, Germany (A. Ruettger, K. Sachse); Lumini Eye Hospital, Bhairahawa, Nepal (R.P. Kandel)

Main Article

Figure 2

Identification of Chlamydiaceae triple infection by using the ArrayTube (Alere Technologies, Jena, Germany) assay. A) Biotinylated PCR product from a DNA extract was hybridized to a DNA microarray carrying species-specific probes from the 23S rRNA gene locus (17). Bar graph shows specific hybridization signals for genus Chlamydia (1), C. trachomatis (2), C. suis (3), and C. psittaci (4) in sample 67. Other signals represent nonspecific cross-hybridization. B) ompA genotyping of the C. trachomati

Figure 2. . . Identification of Chlamydiaceae triple infection by using the ArrayTube (Alere Technologies, Jena, Germany) assay. A) Biotinylated PCR product from a DNA extract was hybridized to a DNA microarray carrying species-specific probes from the 23S rRNA gene locus (17). Bar graph shows specific hybridization signals for genus Chlamydia (1), C. trachomatis (2), C. suis (3), and C. psittaci (4) in sample 67. Other signals represent nonspecific cross-hybridization. B) ompA genotyping of the C. trachomatis strain from sample 64 conducted by using the ArrayStrip platform that is specific for C. trachomatis. The best match of this sample was genotype C. The genotype has been determined by automatic comparison of experimentally obtained (black bars) and theoretically constructed (gray bars) hybridization patterns with use of the software's PatternMatch algorithm. The numerical values of matching score MS (measure of similarity between sample and reference strain) and Delta MS (numerical difference between best and second best match) indicate that the identification is highly accurate (21). The rightmost bars represent internal staining control (biotinylated oligonucleotide probe) and spotting buffer (background).

Main Article

References
  1. Dean  D. Pathogenesis of chlamydial ocular infections. In: Tasman W, Jaeger EA, editors. Duane's foundations of clinical ophthalmology. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 678–702.
  2. Zhang  H, Kandel  RP, Sharma  B, Dean  D. Risk factors for recurrence of postoperative trichiasis: implications for trachoma blindness prevention. Arch Ophthalmol. 2004;122:5116. DOIPubMedGoogle Scholar
  3. Zhang  H, Kandel  RP, Atakari  HK, Dean  D. Impact of oral azithromycin on recurrence of trachomatous trichiasis in Nepal over 1 year. Br J Ophthalmol. 2006;90:9438. DOIPubMedGoogle Scholar
  4. Atik  B, Thanh  TT, Luong  VQ, Lagree  S, Dean  D. Impact of annual targeted treatment on infectious trachoma and susceptibility to reinfection. JAMA. 2006;296:148897. DOIPubMedGoogle Scholar
  5. Chidambaram  JD, Alemayehu  W, Melese  M, Lakew  T, Yi  E, House  J, Effect of a single mass antibiotic distribution on the prevalence of infectious trachoma. JAMA. 2006;295:11426. DOIPubMedGoogle Scholar
  6. Dean  D, Kandel  RP, Adhikari  HK, Hessel  T. Multiple Chlamydiaceae species in trachoma: implications for disease pathogenesis and control. PLoS Med. 2008;5:e14. DOIPubMedGoogle Scholar
  7. Goldschmidt  P, Rostane  H, Sow  M, Goepogui  A, Batellier  L, Chaumeil  C. Detection by broad-range real-time PCR assay of Chlamydia species infecting human and animals. Br J Ophthalmol. 2006;90:14259. DOIPubMedGoogle Scholar
  8. Lietman  T, Brooks  D, Moncada  J, Schachter  J, Dawson  C, Dean  D. Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis. 1998;26:133540. DOIPubMedGoogle Scholar
  9. Gaydos  CA. Nucleic acid amplification tests for gonorrhea and Chlamydia: practice and applications. Infect Dis Clin North Am. 2005;19:36786. DOIPubMedGoogle Scholar
  10. Sachse  K, Vretou  E, Livingstone  M, Borel  N, Pospischil  A, Longbottom  D. Recent developments in the laboratory diagnosis of chlamydial infections. Vet Microbiol. 2009;135:221. DOIPubMedGoogle Scholar
  11. Dean  D, Patton  M, Stephens  RS. Direct sequence evaluation of the major outer membrane protein gene variant regions of Chlamydia trachomatis subtypes D′, I′, and L2′. Infect Immun. 1991;59:157982 .PubMedGoogle Scholar
  12. Geens  T, Desplanques  A, Van Loock  M, Bonner  BM, Kaleta  EF, Magnino  S, Sequencing of the Chlamydophila psittaci ompA gene reveals a new genotype, E/B, and the need for a rapid discriminatory genotyping method. J Clin Microbiol. 2005;43:245661. DOIPubMedGoogle Scholar
  13. Dean  D, Bruno  WJ, Wan  R, Gomes  JP, Devignot  S, Mehari  T, Predicting phenotype and emerging strains among Chlamydia trachomatis infections. Emerg Infect Dis. 2009;15:138594. DOIPubMedGoogle Scholar
  14. Pannekoek  Y, Dickx  V, Beeckman  DS, Jolley  KA, Keijzers  WC, Vretou  E, Multi locus sequence typing of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PLoS ONE. 2010;5:e14179. DOIPubMedGoogle Scholar
  15. Pantchev  A, Sting  R, Bauerfeind  R, Tyczka  J, Sachse  K. Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays. Comp Immunol Microbiol Infect Dis. 2010;33:47384. DOIPubMedGoogle Scholar
  16. Bom  RJ, Christerson  L, Schim van der Loeff  MF, Coutinho  RA, Herrmann  B, Bruisten  SM. Evaluation of high-resolution typing methods for Chlamydia trachomatis in samples from heterosexual couples. J Clin Microbiol. 2011;49:284453. DOIPubMedGoogle Scholar
  17. Sachse  K, Hotzel  H, Slickers  P, Ellinger  T, Ehricht  R. DNA microarray-based detection and identification of Chlamydia and Chlamydophila spp. Mol Cell Probes. 2005;19:4150 and. DOIPubMedGoogle Scholar
  18. Sachse  K, Kuehlewind  S, Ruettger  A, Schubert  E, Rohde  G. More than classical Chlamydia psittaci in urban pigeons. Vet Microbiol. 2012;157:47680. DOIPubMedGoogle Scholar
  19. Borel  N, Kempf  E, Hotzel  H, Schubert  E, Torgerson  P, Slickers  P, Direct identification of chlamydiae from clinical samples using a DNA microarray assay: a validation study. Mol Cell Probes. 2008;22:5564. DOIPubMedGoogle Scholar
  20. Gomes  JP, Hsia  RC, Mead  S, Borrego  MJ, Dean  D. Immunoreactivity and differential developmental expression of known and putative Chlamydia trachomatis membrane proteins for biologically variant serovars representing distinct disease groups. Microbes Infect. 2005;7:41020. DOIPubMedGoogle Scholar
  21. Ruettger  A, Feige  J, Slickers  P, Schubert  E, Morre  SA, Pannekoek  Y, Genotyping of Chlamydia trachomatis strains from culture and clinical samples using an ompA-based DNA microarray assay. Mol Cell Probes. 2011;25:1927. DOIPubMedGoogle Scholar
  22. Kern  DG, Neill  MA, Schachter  J. A seroepidemiologic study of Chlamydia pneumoniae in Rhode Island. Evidence of serologic cross-reactivity. Chest. 1993;104:20813. DOIPubMedGoogle Scholar
  23. Mahmoud  E, Elshibly  S, Mardh  PA. Seroepidemiologic study of Chlamydia pneumoniae and other chlamydial species in a hyperendemic area for trachoma in the Sudan. Am J Trop Med Hyg. 1994;51:48994 .PubMedGoogle Scholar
  24. Lienard  J, Croxatto  A, Aeby  S, Jaton  K, Posfay-Barbe  K, Gervaix  A, Development of a new Chlamydiales-specific real-time PCR and its application to respiratory clinical samples. J Clin Microbiol. 2011;49:263742 and. DOIPubMedGoogle Scholar
  25. Blumer  S, Greub  G, Waldvogel  A, Hassig  M, Thoma  R, Tschuor  A, Waddlia, Parachlamydia and Chlamydiaceae in bovine abortion. Vet Microbiol. 2011;152:38593. DOIPubMedGoogle Scholar
  26. Polkinghorne  A, Borel  N, Becker  A, Lu  ZH, Zimmermann  DR, Brugnera  E, Molecular evidence for chlamydial infections in the eyes of sheep. Vet Microbiol. 2009;135:1426. DOIPubMedGoogle Scholar
  27. Girjes  AA, Hugall  A, Graham  DM, McCaul  TF, Lavin  MF. Comparison of type I and type II Chlamydia psittaci strains infecting koalas (Phascolarctos cinereus). Vet Microbiol. 1993;37:6583. DOIPubMedGoogle Scholar
  28. Becker  A, Lutz-Wohlgroth  L, Brugnera  E, Lu  ZH, Zimmermann  DR, Grimm  F, Intensively kept pigs pre-disposed to chlamydial associated conjunctivitis. J Vet Med A Physiol Pathol Clin Med. 2007;54:30713. DOIPubMedGoogle Scholar
  29. Osman  KM, Ali  HA, Eljakee  JA, Galal  HM. Prevalence of Chlamydophila psittaci infections in the eyes of cattle, buffaloes, sheep and goats in contact with a human population. Transbound Emerg Dis. 2013;60:24551 .DOIPubMedGoogle Scholar
  30. Yamazaki  T, Nakada  H, Sakurai  N, Kuo  CC, Wang  SP, Grayston  JT. Transmission of Chlamydia pneumoniae in young children in a Japanese family. J Infect Dis. 1990;162:13902. DOIPubMedGoogle Scholar
  31. Hughes  C, Maharg  P, Rosario  P, Herrell  M, Bratt  D, Salgado  J, Possible nosocomial transmission of psittacosis. Infect Control Hosp Epidemiol. 1997;18:1658. DOIPubMedGoogle Scholar
  32. Dean  D. Psittacosis. Br Med J. 2012 [cited 2013 Aug 8]. http://www.bestpractice.bmj.com
  33. Lenzko  H, Moog  U, Henning  K, Lederbach  R, Diller  R, Menge  C, High frequency of chlamydial co-infections in clinically healthy sheep flocks. BMC Vet Res. 2011;7:29. DOIPubMedGoogle Scholar
  34. Harrison  HR, Boyce  WT, Wang  SP, Gibb  GN, Cox  JE, Alexander  ER. Infection with Chlamydia trachomatis immunotype J associated with trachoma in children in an area previously endemic for trachoma. J Infect Dis. 1985;151:10346. DOIPubMedGoogle Scholar
  35. Mordhorst  CH, Wang  SP, Grayston  JT. Childhood trachoma in a nonendemic area. Danish trachoma patients and their close contacts, 1963 to 1973. JAMA. 1978;239:176571. DOIPubMedGoogle Scholar
  36. Forsey  T, Darougar  S. Acute conjunctivitis caused by an atypical chlamydial strain: Chlamydia IOL 207. Br J Ophthalmol. 1984;68:40911. DOIPubMedGoogle Scholar
  37. Wang  S, Grayston  JT. Trachoma in the Taiwan monkey Macaca cyclopis. Ann N Y Acad Sci. 1962;98:17787. DOIPubMedGoogle Scholar
  38. Taylor  HR, Prendergast  RA, Dawson  CR, Schachter  J, Silverstein  AM. An animal model for cicatrizing trachoma. Invest Ophthalmol Vis Sci. 1981;21:42233 .PubMedGoogle Scholar
  39. Collier  LH. Experimental infection of baboons with inclusion blennorrhea and trachoma. Ann N Y Acad Sci. 1962;98:18896. DOIPubMedGoogle Scholar
  40. Watkins  NG, Hadlow  WJ, Moos  AB, Caldwell  HD. Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs. Proc Natl Acad Sci U S A. 1986;83:74804. DOIPubMedGoogle Scholar

Main Article

Page created: November 19, 2013
Page updated: November 19, 2013
Page reviewed: November 19, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external