Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 19, Number 6—June 2013

Novel Mycobacterium tuberculosis Complex Isolate from a Wild Chimpanzee

Mireia Coscolla, Astrid Lewin, Sonja Metzger, Kerstin Maetz-Rennsing, Sébastien Calvignac-Spencer, Andreas Nitsche, Pjotr Wojtek Dabrowski, Aleksandar Radonic, Stefan Niemann, Julian Parkhill, Emmanuel Couacy-Hymann, Julia Feldman, Iñaki Comas, Christophe Boesch, Sebastien Gagneux1, and Fabian H. Leendertz1Comments to Author 
Author affiliations: Swiss Tropical and Public Health Institute, Basel, Switzerland (M. Coscolla, J. Feldman, S. Gagneux); University of Basel, Basel (M. Coscolla, J. Feldman, S. Gagneux); Centro Superior de Investigación en Salud Pública, Valencia, Spain (M. Coscolla, I. Comas); Robert Koch-Institut, Berlin, Germany (A. Lewin, S. Metzger, S. Calvignac-Spencer, A. Nitsche, P. Wojtek Dabrowski, A. Radonic, F.H. Leendertz); Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany (S. Metzger, C. Boesch); German Primate Center, Goettingen, Germany (K. Maetz-Rennsing); Research Centre Borstel, Borstel, Germany (S. Niemann); Wellcome Trust Sanger Institute, Cambridge, UK (J. Parkhill); Laboratoire Nationale de la Pathologie Animale, Bingerville, Côte d’Ivoire (E. Couacy-Hymann); CIBER in Epidemiology and Public Health, Barcelona, Spain (I. Comas)

Main Article

Figure 1

Neighbor-joining phylogenic tree constructed on the basis of 13,480 variable common nucleotide positions across 36 human and animal Mycobacterium tuberculosis complex (MTBC) genome sequences, including 21 previously published genomes (18) and the MTBC strain isolated from an adult female chimpanzee that was found dead in Taï National Park, Côte d’Ivoire, on August 5, 2009 (Chimpanzee Bacillus). The tree is rooted with M. canettii, the closest known outgroup. Node support after 1,000 bootstrap re

Figure 1. . Neighbor-joining phylogenic tree constructed on the basis of 13,480 variable common nucleotide positions across 36 human and animal Mycobacterium tuberculosis complex (MTBC) genome sequences, including 21 previously published genomes (18) and the MTBC strain isolated from an adult female chimpanzee that was found dead in Taï National Park, Côte d’Ivoire, on August 5, 2009 (Chimpanzee Bacillus). The tree is rooted with M. canettii, the closest known outgroup. Node support after 1,000 bootstrap replications is indicated. Genomic deletions identified in (7) are indicated. The number of single-nucleotide polymorphisms (SNPs) exclusive of the chimpanzee strain is indicated in the respective branch, and the number of SNPs shared with the most closely related group of strains is indicated in the common branch. Scale bar indicates number of SNPs. This tree is congruent with the maximum-likelihood phylogeny shown in Technical Appendix Figure 2.

Main Article

  1. Cole  ST, Brosch  R, Parkhill  J, Garnier  T, Churcher  C, Harris  D, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393:53744 . DOIPubMedGoogle Scholar
  2. de Jong  BC, Antonio  M, Gagneux  S. Mycobacterium africanum—review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis. 2010;4:e744 . DOIPubMedGoogle Scholar
  3. Gutierrez  MC, Brisse  S, Brosch  R, Fabre  M, Omaïs  B, Marmiesse  M, Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005;1:e5 . DOIPubMedGoogle Scholar
  4. Brosch  R, Gordon  SV, Marmiesse  M, Brodin  P, Buchrieser  C, Eiglmeier  K, A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A. 2002;99:36849. DOIPubMedGoogle Scholar
  5. Huard  RC, Fabre  M, de Haas  P, Claudio Oliveira Lazzarini  L, van Soolingen  D, Cousins  D, Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis. J Bacteriol. 2006;188:427187. DOIPubMedGoogle Scholar
  6. van Ingen  J, Rahim  Z, Mulder  A, Boeree  MJ, Simeone  R, Brosch  R, Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis. 2012;18:6535 . DOIPubMedGoogle Scholar
  7. Gagneux  S, DeRiemer  K, Van  T, Kato-Maeda  M, de Jong  BC, Narayanan  S, Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2006;103:286973. DOIPubMedGoogle Scholar
  8. Mostowy  S, Cousins  D, Brinkman  J, Aranaz  A, Behr  M. Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis. 2002;186:7480. DOIPubMedGoogle Scholar
  9. Garnier  T, Eiglmeier  K, Camus  JC, Medina  N, Mansoor  H, Pryor  M, The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A. 2003;100:787782. DOIPubMedGoogle Scholar
  10. Smith  NH, Kremer  K, Inwald  J, Dale  J, Driscoll  JR, Gordon  SV, Ecotypes of the Mycobacterium tuberculosis complex. J Theor Biol. 2006;239:2205. DOIPubMedGoogle Scholar
  11. Cousins  DV, Peet  RL, Gaynor  WT, Williams  SN, Gow  BL. Tuberculosis in imported hyrax (Procavia capensis) caused by an unusual variant belonging to the Mycobacterium tuberculosis complex. Vet Microbiol. 1994;42:13545. DOIPubMedGoogle Scholar
  12. Alexander  KA, Laver  PN, Michel  AL, Williams  M, van Helden  PD, Warren  RM, Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis. 2010;16:12969. DOIPubMedGoogle Scholar
  13. Leendertz  FH, Pauli  G, Maetz-Rensing  K, Boardman  W, Nunn  C, Ellerbrok  H, Pathogens as drivers of population declines: the importance of systematic monitoring in great apes and other threatened mammals. Biol Conserv. 2006;131:32537. DOIGoogle Scholar
  14. Reddington  K, O’Grady  J, Dorai-Raj  S, Niemann  S, van Soolingen  D, Barry  T. A novel multiplex real-time PCR for the identification of Mycobacteria associated with zoonotic tuberculosis. PLoS ONE. 2011;6:e23481. DOIPubMedGoogle Scholar
  15. Ausubel  FM, Brent  R, Kingston  RE, Moore  DD, Seidman  JG, Smith  JA, Current protocols in molecular biology. New York: Greene Publishing Associated and Wiley-Interscience; 1987.
  16. Gagneux  S, Small  PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis. 2007;7:32837. DOIPubMedGoogle Scholar
  17. Hershberg  R, Lipatov  M, Small  PM, Sheffer  H, Niemann  S, Homolka  S, High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol. 2008;6:e311. DOIPubMedGoogle Scholar
  18. Li  H, Durbin  R. Fast and accurate short read alignment with Burrows Wheeler transform. Bioinformatics. 2009;25:175460. DOIPubMedGoogle Scholar
  19. Comas  I, Chakravartti  J, Small  PM, Galagan  J, Niemann  S, Kremer  K, Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet. 2010;42:498503. DOIPubMedGoogle Scholar
  20. Li  H, Handsaker  B, Wysoker  A, Fennell  T, Ruan  J, Homer  N, The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:20789 . DOIPubMedGoogle Scholar
  21. Chevreux  B, Wetter  T, Suhai  S. Genome sequence assembly using trace signals and additional sequence information. In: Computer science and biology: proceedings of the German Conference on Bioinformatics. Braunschweig (Germany): GBF Braunschweig Department of Bioinformatics; 1999. p. 45–56.
  22. Rissman  AI, Mau  B, Biehl  BS, Darling  AE, Glasner  JD, Perna  NT. Reordering contigs of draft genomes using the Mauve Aligner. Bioinformatics. 2009;25:20713. DOIPubMedGoogle Scholar
  23. Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:15969. DOIPubMedGoogle Scholar
  24. Posada  D. jModelTest: Phylogenetic model averaging. Mol Biol Evol. 2008;25:12536. DOIPubMedGoogle Scholar
  25. Guindon  S, Lethiec  F, Duroux  P, Gascuel  O. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 2005;33:W557–9. DOIPubMedGoogle Scholar
  26. Ronquist  F, Huelsenbeck  JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:15724. DOIPubMedGoogle Scholar
  27. Kamerbeek  J, Schouls  L, Kolk  A, van Agterveld  M, van Soolingen  D, Kuijper  S, Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:90714 .PubMedGoogle Scholar
  28. Goh  KS, Fabre  M, Huard  RC, Schmid  S, Sola  C, Rastogi  N. Study of the gyrB gene polymorphism as a tool to differentiate among Mycobacterium tuberculosis complex subspecies further underlines the older evolutionary age of Mycobacterium canettii. Mol Cell Probes. 2006;20:18290. DOIPubMedGoogle Scholar
  29. Bentley  SD, Comas  , Bryant  JM, Walker  D, Smith  NH, Harris  SR, The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis. 2012;6:e1552.
  30. Demay  C, Liens  B, Burguiere  T, Hill  V, Couvin  D, Millet  J, SITVITWEB—a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol. 2012;12:75566. DOIPubMedGoogle Scholar
  31. Mostowy  S, Onipede  A, Gagneux  S, Niemann  S, Kremer  K, Desmond  EP, Genomic analysis distinguishes Mycobacterium africanum. J Clin Microbiol. 2004;42:35949. DOIPubMedGoogle Scholar
  32. Thorel  MF. Isolation of Mycobacterium africanum from monkeys. Tubercle. 1980;61:1014 . DOIPubMedGoogle Scholar
  33. Michel  AL, Venter  L, Espie  IW, Coetzee  ML. Mycobacterium tuberculosis infections in eight species at the national zoological gardens of South Africa, 1991−2001. J Zoo Wildl Med. 2003;34:36470. DOIPubMedGoogle Scholar
  34. Mostowy  S, Cousins  D, Behr  MA. Genomic interrogation of the Dassie Bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J Bacteriol. 2004;186:1049 . DOIPubMedGoogle Scholar
  35. Wolfe  ND, Dunavan  CP, Diamond  J. Origins of major human infectious diseases. Nature. 2007;447:27983. DOIPubMedGoogle Scholar
  36. Calvignac-Spencer  S, Leendertz  SAJ, Gillespie  TR, Leendertz  FH. Wild great apes as sentinels and sources of infectious disease. Clin Microbiol Infect. 2012;18:5217. DOIPubMedGoogle Scholar
  37. Boesch  C, Boesch-Achermann  H. The chimpanzees of the Taý Forest: behavioural ecology and evolution. Oxford/New York: Oxford University Press; 2000.
  38. Koeck  JL, Fabre  M, Simon  F, Daffe  M, Garnotel  E, Matan  AB, Clinical characteristics of the smooth tubercle bacilli Mycobacterium canettii infection suggest the existence of an environmental reservoir. Clin Microbiol Infect. 2011;17:10139. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: May 20, 2013
Page updated: May 20, 2013
Page reviewed: May 20, 2013
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.