Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 9—September 2014

Highly Pathogenic Avian Influenza A(H5N8) Virus from Waterfowl, South Korea, 2014

Cite This Article

To the Editor: To date, 18 hemagglutinin (HA) subtypes and 11 neuraminidase (NA) subtypes have been identified in influenza A viruses (14). Influenza A viruses containing HA subtypes 1–16 circulate in aquatic birds (1,2), whereas those harboring HA subtypes 17 and 18 are found in bats (3,4).

On January 18, 2014, the government of South Korea reported an outbreak of highly pathogenic avian influenza A(H5N8) virus in breeding ducks in the southern part of Jeollabuk-Do Province (5). More than 12 million poultry have since been culled, but the spread of the virus continues in duck and chicken farms. We report the genetic characterization of this virus.

On February 15, 2014, a total of 200 fecal samples were collected from waterfowl in the Pungse River in Chungnam Province, which is geographically close to Jeollabuk-Do Province. All samples were inoculated into hens’ eggs, and influenza A viruses were confirmed by PCR by using influenza A–specific nucleoprotein (NP) primers. We obtained 1 isolate, A/waterfowl/Korea/S005/2014 (H5N8), and sequenced the full regions of all 8 genes as described (6). These sequences were deposited into GenBank under accession nos. KJ511809–KJ511816.

We conducted a BLAST search (, to identify the closest gene sequences to those of A/waterfowl/Korea/S005/2014 (H5N8) (Table). Sequences for polymerase basic (PB) 2 (99% homology), HA (97% homology), and NP (99% homology) genes were closely related to those of A/wild duck/Shandong/628/2011 (H5N1). Sequences for PB1 (99% homology), polymerase acidic subunit (PA) (98% homology), matrix (M) (99% homology), and nonstructural (NS) (99% homology) genes were closely related to those of A/duck/Jiangsu/1-15/2011 (H4N2). Sequences for the NA (98% homology) gene were closely related to that of A/duck/Jiangsu/k1203/2010 (H5N8). Phylogenic analysis showed that all 8 genes of A/waterfowl/Korea/S005/2014 (H5N8) belonged to the Eurasian lineage, and that the HA gene clustered with clade 2.3.4 (Technical Appendix Figure 1).

We further analyzed the amino acid sequences of the virus isolate (online Technical Appendix Table 1). Positions 138 and 160 of the HA protein (H3 numbering) contained an alanine (A) residue, which was previously found to be related to enhanced binding to the human influenza receptor (7). The connecting peptide of HA contained an insertion of 4 basic amino acids (arginine-arginine-arginine-lysine), which is the same as in the HA of A/duck/Korea/Buan2/2014 (H5N8), an isolate from a duck farm in South Korea (GenBank accession no. KJ413839.1–KJ413846.1). Aspartic acid was found in M1 at position 30 and alanine at position 215; this combination has been connected with increased virulence in mice (8). The NS1 sequence contained serine at position 42, which is related to the enhanced pathogenicity in mice, but a truncation of the amino acids at positions 218–230 that has been linked with reduced pathogenicity in mice (9) was not identified. Asparagine was identified at position 31 of M2, which is the same in M2 of A/duck/Korea/Buan2/2014 (H5N8) and confers resistance to amantadine and rimantadine (10).

Because all 8 genes of A/waterfowl/Korea/S005/2014 (H5N8) are closely related to those of the A/duck/Korea/Buan2/2014 (H5N8) isolate that was obtained from a duck farm, it is likely that A/waterfowl/Korea/S005/2014 (H5N8) originated from infected waterfowl that had visited poultry on an infected farm (Technical Appendix Figure 1). Our laboratory has studied the feces of wild birds in Chungnam Province since 2009, surveying >20,000 fecal samples from wild birds in this area each year, but we had not previously isolated avian influenza A(H5N8) virus from any samples.

The genetic analysis of the A/waterfowl/Korea/S005/2014 (H5N8) isolate indicates that this novel strain may have been created by the reassortment of PB2, HA, and NP segments from H5N1-like avian influenza virus; PB1, PA, M, and NS segments from H4N2-like avian influenza virus; and NA segments from H5N8-like avian influenza virus (Technical Appendix Figure 2). Most genes of the virus we isolated are related to those of avian influenza viruses isolated in China, but the HA gene of A/waterfowl/Korea/S005/2014 (H5N8) showed only 97% homology to the closest HA gene in GenBank, which indicates that this gene may have been created in poultry in South Korea. To our knowledge, no outbreak of this virus in poultry farms in China has been reported, and we found no previous reports in the literature that migratory birds could carry the virus. Taken together, our data suggest that A/waterfowl/Korea/S005/2014 (H5N8) may have been reassorted in a duck farm in South Korea.



We thank the scientific editor from Editage who edited this manuscript.

This work was funded by a Basic Science Research Program through National Research Foundation of Korea from the Ministry of Education, Science and Technology (2012R1A2A2A 01002533).


Keun Bon Ku1, Eun Hye Park1, Jung Yum1, Ji An Kim, Seung Kyoo Oh, and Sang Heui SeoComments to Author 
Author affiliations: Chungnam National University College of Veterinary Medicine, Daejeon, South Korea



  1. Webster  RG, Bean  WJ, Gorman  OT, Chambers  TM, Kawaoka  Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:15279.PubMedGoogle Scholar
  2. Fouchier  RA, Munster  V, Wallensten  A, Bestebroer  TM, Herfst  S, Smith  D, Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 2005;79:281422. DOIPubMedGoogle Scholar
  3. Tong  S, Li  Y, Rivailler  P, Conrardy  C, Castillo  DA, Chen  LM, A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109:426974. DOIPubMedGoogle Scholar
  4. Tong  S, Zhu  X, Li  Y, Shi  M, Zhang  J, Bourgeois  M, New World bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657. DOIPubMedGoogle Scholar
  5. World Organisation for Animal Health. Highly pathogenic avian influenza, Korea (Rep. of). Information received on 18/01/2014 from Dr TaeYung Kim, Director General, Livestock Policy Bureau, Ministry for Food, Agriculture, Forestry & Fisheries, Sejong-Si, Korea (Rep. of) [cited 2014 Mar 5].
  6. Hoffmann  E, Stech  J, Guan  Y, Webster  RG, Perez  DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:227589. DOIPubMedGoogle Scholar
  7. Wang  W, Lu  B, Zhou  H, Suguitan  AL Jr, Cheng  X, Subbarao  K, Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol. 2010;84:65707. DOIPubMedGoogle Scholar
  8. Fan  S, Deng  G, Song  J, Tian  G, Suo  Y, Jiang  Y, Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology. 2009;384:2832. DOIPubMedGoogle Scholar
  9. Jiao  P, Tian  G, Li  Y, Deng  G, Jiang  Y, Liu  C, A single amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol. 2008;82:114654. DOIPubMedGoogle Scholar
  10. Hay  AJ, Wolstenholme  AJ, Skehel  JJ, Smith  MH. The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 1985;4:3021.PubMedGoogle Scholar




Cite This Article

DOI: 10.3201/eid2009.140390

1These authors equally contributed to this article.

Related Links


Table of Contents – Volume 20, Number 9—September 2014

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.



Please use the form below to submit correspondence to the authors or contact them at the following address:

Sang Heui Seo, Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 220 Gung Dong, YuseongGu, Daejeon 305-764, South Korea

Send To

10000 character(s) remaining.


Page created: August 18, 2014
Page updated: August 18, 2014
Page reviewed: August 18, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.