Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 10—October 2015

Environmental Factors Related to Fungal Wound Contamination after Combat Trauma in Afghanistan, 2009–2011

David R. TribbleComments to Author , Carlos J. Rodriguez, Amy C. Weintrob, Faraz Shaikh, Deepak Aggarwal, M. Leigh Carson, Clinton K. Murray, Penny Masuoka, on behalf of the Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group
Author affiliations: Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA (D.R. Tribble, A.C. Weintrob, F. Shaikh, D. Aggarwal, M.L. Carson, P. Masuoka); Walter Reed National Military Medical Center, Bethesda (C.J. Rodriguez, A.C. Weintrob); Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda (A.C. Weintrob, F. Shaikh, D. Aggarwal, M.L. Carson, P. Masuoka); San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, Texas, USA (C.K. Murray)

Main Article

Table 2

Environmental characteristics of 2 regions in Afghanistan associated with combat-related trauma, June 2009–August 2011*

Characteristic Southern Afghanistan, median (IQR) Eastern Afghanistan, median (IQR) p value†
NDVI‡ 7.64 (7.23–7.95) 7.69 (7.52–8.00) 0.384
Elevation, m 902 (859–946) 1,670 (1,050–2,117) <0.001
4.2 (4.1–4.2)
3.4 (3.4–3.5)
Temperature, °C
Annual mean 18.8 (18.6–19.5) 13.9 (10.3–18.3) <0.001
Seasonality¶ 880.7 (877.9–884) 861.7 (853.6–964.0) 0.471
Mean diurnal range 17.4 (17.3–17.5) 13.5 (12.7–15.0) <0.001
Maximum of warmest month 40.8 (40.5–41.3) 33.4 (31.5–36.6) <0.001
Minimum of coldest month −0.6 (−0.8 to 0) −3.8 (−12 to 0.5) 0.194
Annual range 41.4 (41.3–41.5) 36.5 (35.8–43.3) 0.138
Mean of wettest quarter 9.6 (9.2–10.3) 8.1 (4.8–12.5) 0.681
Mean of driest quarter 30.1 (29.6–30.8) 19.3 (17.8–21.3) <0.001
Mean of warmest quarter 30.2 (29.9–30.8) 25.3 (22.5–29.3) <0.001
Mean of coldest quarter
7.3 (7.0–7.9)
2.7 (−2.9 to 7.1)
Precipitation, mL
Annual 145 (130–154) 443 (2,795–546) <0.001
Wettest month 39 (35–40) 89 (64–123) <0.001
Driest month 0 6 (0–12.5) <0.001
Seasonality# 110 (108–115) 82 (73–90) <0.001
Wettest quarter 103 (92–109) 210 (168–307) <0.001
Driest quarter 0 28 (8–51) <0.001
Warmest quarter 0 46 (10–66) <0.001
Coldest quarter
90 (80–95)
125 (113–151)
*Environmental characteristics were obtained in relation to grid coordinates on a per-individual basis: southern Afghanistan region (147 patients) and eastern Afghanistan region (20 patients). IQR, interquartile range; NDVI, normalized difference vegetation index.
†p values were calculated using Wilcoxon rank-sum test. The regional variables were treated as dependent, whereas the environmental characteristic was independent.
‡NDVI uses a mathematical formula to quantify the density of healthy green vegetation in a region. Higher values indicate healthy green vegetation (e.g., forests), while lower values are associated with water, snow, sand, rock, and dead vegetation (25,26). The NDVI values were normalized by taking the natural log of the index.
§Mean diurnal range divided by temperature annual range and then multiplied by 100.
¶SD of weekly mean temperature multiplied by 100.
#Coefficient of variation.

Main Article

  1. Pfaller  MA, Pappas  PG, Wingard  JR. Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis. 2006;43(Suppl 1):S314. DOIGoogle Scholar
  2. Neblett Fanfair  R, Benedict  K, Bos  J, Bennett  SD, Lo  Y-C, Adebanjo  T, Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med. 2012;367:221425. DOIPubMedGoogle Scholar
  3. Roden  MM, Zaoutis  TE, Buchanan  WL, Knudsen  TA, Sarkisova  TA, Schaufele  RL, Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:63453. DOIPubMedGoogle Scholar
  4. Vitrat-Hincky  V, Lebeau  B, Bozonnet  E, Falcon  D, Pradel  P, Faure  O, Severe filamentous fungal infections after widespread tissue damage due to traumatic injury: six cases and review of the literature. Scand J Infect Dis. 2009;41:491500 . DOIPubMedGoogle Scholar
  5. Hajdu  S, Obradovic  A, Presterl  E, Vecsei  V. Invasive mycoses following trauma. Injury. 2009;40:54854. DOIPubMedGoogle Scholar
  6. Warkentien  T, Rodriguez  C, Lloyd  B, Wells  J, Weintrob  A, Dunne  J, Invasive mold infections following combat-related injuries. Clin Infect Dis. 2012;55:14419. DOIPubMedGoogle Scholar
  7. Lanternier  F, Dannaoui  E, Morizot  G, Elie  C, Garcia-Hermoso  D, Huerre  M, A global analysis of mucormycosis in France: the RetroZygo Study (2005–2007). Clin Infect Dis. 2012;54(Suppl 1):S3543. DOIPubMedGoogle Scholar
  8. Skiada  A, Rigopoulos  D, Larios  G, Petrikkos  G, Katsambas  A. Global epidemiology of cutaneous zygomycosis. Clin Dermatol. 2012;30:62832. DOIPubMedGoogle Scholar
  9. Ribes  JA, Vanover-Sams  CL, Baker  DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000;13:236301. DOIPubMedGoogle Scholar
  10. Benedict  K, Park  BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;20:34955. DOIPubMedGoogle Scholar
  11. Radowsky  JS, Strawn  AA, Sherwood  J, Braden  A, Liston  W. Invasive mucormycosis and aspergillosis in a healthy 22-year-old battle casualty: case report. Surg Infect (Larchmt). 2011;12:397400. DOIPubMedGoogle Scholar
  12. Paolino  KM, Henry  JA, Hospenthal  DR, Wortmann  GW, Hartzell  JD. Invasive fungal infections following combat-related injury. Mil Med. 2012;177:6815. DOIPubMedGoogle Scholar
  13. Weintrob  AC, Weisbrod  AB, Dunne  JR, Rodriguez  CJ, Malone  D, Lloyd  BA, Combat trauma-associated invasive fungal wound infections: epidemiology and clinical classification. Epidemiol Infect. 2015;143:21424. DOIPubMedGoogle Scholar
  14. Rodriguez  CJ, Weintrob  AC, Shah  J, Malone  D, Dunne  JR, Weisbrod  AB, Risk factors associated with invasive fungal Infections in combat trauma. Surg Infect (Larchmt). 2014;15:5216. DOIPubMedGoogle Scholar
  15. Tribble  DR, Conger  NG, Fraser  S, Gleeson  TD, Wilkins  K, Antonille  T, Infection-associated clinical outcomes in hospitalized medical evacuees after traumatic injury: Trauma Infectious Disease Outcome Study. J Trauma. 2011;71(Suppl):S3342. DOIPubMedGoogle Scholar
  16. Eastridge  BJ, Jenkins  D, Flaherty  S, Schiller  H, Holcomb  JB. Trauma system development in a theater of war: experiences from Operation Iraqi Freedom and Operation Enduring Freedom. J Trauma. 2006;61:136672. DOIPubMedGoogle Scholar
  17. Evriviades  D, Jeffery  S, Cubison  T, Lawton  G, Gill  M, Mortiboy  D. Shaping the military wound: issues surrounding the reconstruction of injured servicemen at the Royal Centre for Defence Medicine. Philos Trans R Soc Lond B Biol Sci. 2011;366:21930. DOIPubMedGoogle Scholar
  18. Hijmans  RJ, Cameron  SE, Parra  JL, Jones  PG, Jarvis  A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25:196578. DOIGoogle Scholar
  19. Phillips  SJ, Anderson  RP, Schapire  RE. Maximum entropy modeling of species geographic distributions. Ecol Modell. 2006;190:23159. DOIGoogle Scholar
  20. Elith  J, Graham  CH, Anderson  RP, Dudik  M, Ferrier  S, Guisan  A, Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:12951. DOIGoogle Scholar
  21. Hernandez  PA, Graham  CH, Master  LL, Albert  DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:77385. DOIGoogle Scholar
  22. Swets  JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:128593 . DOIPubMedGoogle Scholar
  23. Fielding  AH, Bell  JF. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv. 1997;24:3849. DOIGoogle Scholar
  24. Moffett  A, Shackelford  N, Sarkar  S. Malaria in Africa: vector species' niche models and relative risk maps. PLoS ONE. 2007;2:e824. DOIPubMedGoogle Scholar
  25. Rouse  JW, Haas  RH, Schell  JA, Deering  DW. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden SC, Mercanti EP, Becker MA, editors. NASA Goddard Space Flight Center Third Earth Resources Technology Satellite-1 Symposium. Washington, DC: National Aeronautics and Space Administration; 1974. p. 309–17.
  26. Lillesand  TM, Kiefer  RW, Chipman  JW. Earth resources satellites operating in the optical spectrum. In: Remote sensing and image interpretation. New York: John Wiley & Sons; 2008. p. 464.
  27. Richardson  M. The ecology of the zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 2009;15(Suppl 5):29. DOIPubMedGoogle Scholar
  28. Horn  BW. Ecology and population biology of aflatoxigenic fungi in soil. J Toxicol Toxin Rev. 2003;22:35179. DOIGoogle Scholar
  29. Collado  J, Platas  G, Gonzalez  I, Pelaez  F. Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol. 1999;144:52532. DOIGoogle Scholar
  30. Cotty  PJ. Aflatoxin-producing potential of communities of Aspergillus section Flavi from cotton producing areas in the United States. Mycol Res. 1997;101:698704. DOIGoogle Scholar
  31. Qu  B, Li  HP, Zhang  JB, Xu  YB, Huang  T, Wu  AB, Geographic distribution and genetic diversity of Fusarium graminearum and F. asiaticum on wheat spikes throughout China. Plant Pathol. 2008;57:1524 .DOIGoogle Scholar
  32. Reis  A, Boiteux  LS. Alternaria species infecting Brassicaceae in the Brazilian neotropics: Geographical distribution, host range and specificity. J Plant Pathol. 2010;92:6618
  33. Razzaghi-Abyaneh  M, Shams-Ghahfarokhi  M, Allameh  A, Kazeroon-Shiri  A, Ranjbar-Bahadori  S, Mirzahoseini  H, A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: Population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia. 2006;161:18392. DOIPubMedGoogle Scholar
  34. Iftikhar  S, Sultan  A, Munir  A, Iram  S, Ahmad  I. Fungi associated with rice-wheat cropping system in relation to zero and conventional tillage technologies. J Biol Sci. 2003;3:107683. DOIGoogle Scholar
  35. Milbrant  A, Overend  R. Assessment of biomass resources in Afghanistan. Golden (CO): National Renewable Energy Laboratory. 2011 [cited 2014 Oct 21].
  36. Khaliq  A, Johnson  K. As U.S. draws down, Afghan opium production thrives. Navy Times. May 1, 2014 [cited 2014 Oct 21].

Main Article

1A portion of this material was presented at the Military Health System Research Symposium, August 18–21, 2014, Fort Lauderdale, Florida, USA.

Page created: September 22, 2015
Page updated: September 22, 2015
Page reviewed: September 22, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.