Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 10—October 2015

Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure

Sandie Ménard, Tanila Ben Haddou, Arba Pramundita Ramadani1, Frédéric Ariey, Xavier Iriart, Johann Beghain, Christiane Bouchier, Benoit Witkowski2, Antoine Berry, Odile Mercereau-Puijalon, and Françoise Benoit-VicalComments to Author 
Author affiliations: Université de Toulouse, Toulouse, France (S. Ménard, T. Ben Haddou, A.P. Ramadani, X. Iriart, B. Witkowski, A. Berry, F. Benoit-Vical); Centre de Physiopathologie de Toulouse-Purpan, Toulouse (S. Ménard. X. Iriart, A. Berry); Laboratoire de Chimie de Coordination du Centre National de la Recherche Scientifique, Toulouse (T. Ben Haddou, A.P. Ramadani, B. Witkowski, F. Benoit-Vical); Institut Pasteur, Paris, France (F. Ariey, J. Beghain, C. Bouchier, O. Mercereau-Puijalon); Centre Hospitalier Universitaire de Toulouse, Toulouse (X. Iriart, A. Berry)

Main Article

Table 2

RSA values for Plasmodium falciparum F32-TEM and F32-ART lineages and recrudescence times for trophozoite parasite stages after a 48-h exposure to artemisinin*

Artemisinin pressure cycle Dose, µmol/L RSA0–3 h
RSA13–16 h
Recrudescence time for trophozoite stage, d
Median survival rate†
(IQR) No. assays‡ Survival rate† No. assays‡ Median (IQR) No. assays‡
0 (F32-TEM) 0 0 (0–0.03)§ 5 0 1 17.5 (17–18) 2
12 0.02 0 (0–0) 2 0 1 ND NA
17 0.04 0 (0–0.07)¶ 3 0 1 ND NA
48 2.7 11.7 (10.3–14.6)¶ 3 2.5 1 ND NA
115 8.9 6.8 (5.9–15.9) 3 2.1 1 ND NA
122 9 12.8 (10.6–14.5)¶ 3 3.8 1 ND NA
123 10 9.5 (8.1–11.8)§ 4 2.9 1 11 (10.3–12.5) 3

*RSA, ring-stage survival assay; IQR, interquartile range; ND, not determined; NA, not applicable.
†Survival rates are expressed as percentage of parasites remaining alive after drug treatment compared with mock-treated culture.
‡Assays that fulfilled criteria for successful culture.
§Significant survival rate difference (by Mann Whitney rank sum test, p<0.05) between F32-ART5 and its sibling line F32-TEM.
¶Data were obtained from Ariey et al. (10).

Main Article

  1. World Health Organization. World malaria report, 2014. Geneva: The Organization; 2014.
  2. World Health Organization Global Malaria Programme. Status report on artemisinin resistance. WHO/HTM/GMP/20149, 2014. Geneva: The Organization; 2014.
  3. Takala-Harrison  S, Jacob  CG, Arze  C, Cummings  MP, Silva  JC, Dondorp  AM, Independent emergence of Plasmodium falciparum artemisinin resistance mutations in Southeast Asia. J Infect Dis. 2015;211:6709. DOIPubMedGoogle Scholar
  4. Ashley  EA, Dhorda  M, Fairhurst  RM, Amaratunga  C, Lim  P, Suon  S, Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:41123. DOIPubMedGoogle Scholar
  5. Tun  KM, Imwong  M, Lwin  KM, Win  AA, Hlaing  TM, Hlaing  T, Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:41521. DOIPubMedGoogle Scholar
  6. Miotto  O, Amato  R, Ashley  EA, MacInnis  B, Almagro-Garcia  J, Amaratunga  C, Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:22634.PubMedGoogle Scholar
  7. Borrmann  S, Sasi  P, Mwai  L, Bashraheil  M, Abdallah  A, Muriithi  S, Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS ONE. 2011;6:e26005. DOIPubMedGoogle Scholar
  8. Vreden  SG, Jitan  JK, Bansie  RD, Adhin  MR. Evidence of an increased incidence of day 3 parasitaemia in Suriname: an indicator of the emerging resistance of Plasmodium falciparum to artemether. Mem Inst Oswaldo Cruz. 2013;108:96873. DOIPubMedGoogle Scholar
  9. Witkowski  B, Lelievre  J, Barragan  MJ, Laurent  V, Su  XZ, Berry  A, Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54:18727. DOIPubMedGoogle Scholar
  10. Ariey  F, Witkowski  B, Amaratunga  C, Beghain  J, Langlois  AC, Khim  N, A molecular marker of artemisinin resistant Plasmodium falciparum malaria. Nature. 2014;505:505. DOIPubMedGoogle Scholar
  11. Witkowski  B, Khim  N, Chim  P, Kim  S, Ke  S, Kloeung  N, Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57:91423. DOIPubMedGoogle Scholar
  12. Witkowski  B, Amaratunga  C, Khim  N, Sreng  S, Chim  P, Kim  S, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13:10439. DOIPubMedGoogle Scholar
  13. Straimer  J, Gnadig  NF, Witkowski  B, Amaratunga  C, Duru  V, Ramadani  AP, K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:42831. DOIPubMedGoogle Scholar
  14. Amaratunga  C, Witkowski  B, Dek  D, Try  V, Khim  N, Miotto  O, Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother. 2014;58:49357. DOIPubMedGoogle Scholar
  15. Amaratunga  C, Witkowski  B, Khim  N, Menard  D, Fairhurst  RM. Artemisinin resistance in Plasmodium falciparum. Lancet Infect Dis. 2014;14:44950. DOIPubMedGoogle Scholar
  16. Lewis  K. Persister cells. Annu Rev Microbiol. 2010;64:35772. DOIPubMedGoogle Scholar
  17. Wolfson  JS, Hooper  DC, Mchugh  GL, Bozza  MA, Swartz  MN. Mutants of Escherichia-coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob Agents Chemother. 1990;34:193843. DOIPubMedGoogle Scholar
  18. Moyed  HS, Bertrand  KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol. 1983;155:76875 .PubMedGoogle Scholar
  19. Witkowski  B, Lelievre  J, Nicolau-Travers  ML, Iriart  X, Njomnang Soh  P, Bousejra-Elgarah  F, Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs. PLoS ONE. 2012;7:e32620. DOIPubMedGoogle Scholar
  20. Benoit-Vical  F, Lelievre  J, Berry  A, Deymier  C, Dechy-Cabaret  O, Cazelles  J, Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. Antimicrob Agents Chemother. 2007;51:146372. DOIPubMedGoogle Scholar
  21. Desjardins  RE, Canfield  CJ, Haynes  JD, Chulay  JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:7108. DOIPubMedGoogle Scholar
  22. Dawson  CC, Intapa  C, Jabra-Rizk  MA. “Persisters”: survival at the cellular level. PLoS Pathog. 2011;7:e1002121. DOIPubMedGoogle Scholar
  23. Chen  N, LaCrue  AN, Teuscher  F, Waters  NC, Gatton  ML, Kyle  DE, Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum. Antimicrob Agents Chemother. 2014;58:477381. DOIPubMedGoogle Scholar
  24. Mok  S, Ashley  EA, Ferreira  PE, Zhu  L, Lin  Z, Yeo  T, Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:4315. DOIPubMedGoogle Scholar
  25. Veiga  MI, Ferreira  PE, Schmidt  BA, Ribacke  U, Bjorkman  A, Tichopad  A, Antimalarial exposure delays Plasmodium falciparum intra-erythrocytic cycle and drives drug transporter genes expression. PLoS ONE. 2010;5:e12408. DOIPubMedGoogle Scholar
  26. Bohórquez  EB, Juliano  JJ, Kim  HS, Meshnick  SR. Mefloquine exposure induces cell cycle delay and reveals stage-specific expression of the pfmdr1 gene. Antimicrob Agents Chemother. 2013;57:8339. DOIPubMedGoogle Scholar
  27. Peatey  CL, Chavchich  M, Chen  N, Gresty  KJ, Gray  KA, Gatton  ML, Mitochondrial membrane potential in a small subset of artemisinin-induced dormant Plasmodium falciparum parasites in vitro. J Infect Dis. 2015;212:42634. DOIPubMedGoogle Scholar
  28. Sijwali  PS, Rosenthal  PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci U S A. 2004;101:43849. DOIPubMedGoogle Scholar
  29. Klonis  N, Crespo-Ortiz  MP, Bottova  I, Abu-Bakar  N, Kenny  S, Rosenthal  PJ, Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A. 2011;108:1140510. DOIPubMedGoogle Scholar
  30. Foley  M, Tilley  L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998;79:5587. DOIPubMedGoogle Scholar
  31. Robert  A, Benoit-Vical  F, Claparols  C, Meunier  B. The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci U S A. 2005;102:1367680. DOIPubMedGoogle Scholar
  32. Conrad  MD, Bigira  V, Kapisi  J, Muhindo  M, Kamya  MR, Havlir  DV, Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS ONE. 2014;9:e105690. DOIPubMedGoogle Scholar
  33. Nyunt  MH, Hlaing  T, Oo  HW, Tin-Oo  LL, Phway  HP, Wang  B, Molecular assessment of artemisinin resistance markers, polymorphisms in the K13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Clin Infect Dis. 2015;60:120815. DOIPubMedGoogle Scholar
  34. Kamau  E, Campino  S, Amenga-Etego  L, Drury  E, Ishengoma  D, Johnson  K, K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:13525 .PubMedGoogle Scholar
  35. Saunders  DL, Vanachayangkul  P, Lon  C. Dihydroartemisinin-piperaquine failure in Cambodia. N Engl J Med. 2014;371:4845. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Universitas Gadjah Mada, Yogyakarta, Indonesia.

2Current affiliation: Institut Pasteur, Phnom Penh, Cambodia.

Page created: September 22, 2015
Page updated: September 22, 2015
Page reviewed: September 22, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.