Volume 21, Number 10—October 2015
Research
Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure
Table 2
RSA values for Plasmodium falciparum F32-TEM and F32-ART lineages and recrudescence times for trophozoite parasite stages after a 48-h exposure to artemisinin*
Artemisinin pressure cycle | Dose, µmol/L | RSA0–3 h |
RSA13–16 h |
Recrudescence time for trophozoite stage, d |
|||||
---|---|---|---|---|---|---|---|---|---|
Median survival rate† (IQR) | No. assays‡ | Survival rate† | No. assays‡ | Median (IQR) | No. assays‡ | ||||
0 (F32-TEM) | 0 | 0 (0–0.03)§ | 5 | 0 | 1 | 17.5 (17–18) | 2 | ||
12 | 0.02 | 0 (0–0) | 2 | 0 | 1 | ND | NA | ||
17 | 0.04 | 0 (0–0.07)¶ | 3 | 0 | 1 | ND | NA | ||
48 | 2.7 | 11.7 (10.3–14.6)¶ | 3 | 2.5 | 1 | ND | NA | ||
115 | 8.9 | 6.8 (5.9–15.9) | 3 | 2.1 | 1 | ND | NA | ||
122 | 9 | 12.8 (10.6–14.5)¶ | 3 | 3.8 | 1 | ND | NA | ||
123 | 10 | 9.5 (8.1–11.8)§ | 4 | 2.9 | 1 | 11 (10.3–12.5) | 3 |
*RSA, ring-stage survival assay; IQR, interquartile range; ND, not determined; NA, not applicable.
†Survival rates are expressed as percentage of parasites remaining alive after drug treatment compared with mock-treated culture.
‡Assays that fulfilled criteria for successful culture.
§Significant survival rate difference (by Mann Whitney rank sum test, p<0.05) between F32-ART5 and its sibling line F32-TEM.
¶Data were obtained from Ariey et al. (10).
References
- World Health Organization. World malaria report, 2014. Geneva: The Organization; 2014.
- World Health Organization Global Malaria Programme. Status report on artemisinin resistance. WHO/HTM/GMP/20149, 2014. Geneva: The Organization; 2014.
- Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, Independent emergence of Plasmodium falciparum artemisinin resistance mutations in Southeast Asia. J Infect Dis. 2015;211:670–9. DOIPubMedGoogle Scholar
- Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–23. DOIPubMedGoogle Scholar
- Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–21. DOIPubMedGoogle Scholar
- Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet. 2015;47:226–34.PubMedGoogle Scholar
- Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, Declining responsiveness of Plasmodium falciparum infections to artemisinin-based combination treatments on the Kenyan coast. PLoS ONE. 2011;6:e26005. DOIPubMedGoogle Scholar
- Vreden SG, Jitan JK, Bansie RD, Adhin MR. Evidence of an increased incidence of day 3 parasitaemia in Suriname: an indicator of the emerging resistance of Plasmodium falciparum to artemether. Mem Inst Oswaldo Cruz. 2013;108:968–73. DOIPubMedGoogle Scholar
- Witkowski B, Lelievre J, Barragan MJ, Laurent V, Su XZ, Berry A, Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;54:1872–7. DOIPubMedGoogle Scholar
- Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, A molecular marker of artemisinin resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5. DOIPubMedGoogle Scholar
- Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother. 2013;57:914–23. DOIPubMedGoogle Scholar
- Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–9. DOIPubMedGoogle Scholar
- Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347:428–31. DOIPubMedGoogle Scholar
- Amaratunga C, Witkowski B, Dek D, Try V, Khim N, Miotto O, Plasmodium falciparum founder populations in western Cambodia have reduced artemisinin sensitivity in vitro. Antimicrob Agents Chemother. 2014;58:4935–7. DOIPubMedGoogle Scholar
- Amaratunga C, Witkowski B, Khim N, Menard D, Fairhurst RM. Artemisinin resistance in Plasmodium falciparum. Lancet Infect Dis. 2014;14:449–50. DOIPubMedGoogle Scholar
- Wolfson JS, Hooper DC, Mchugh GL, Bozza MA, Swartz MN. Mutants of Escherichia-coli K-12 exhibiting reduced killing by both quinolone and beta-lactam antimicrobial agents. Antimicrob Agents Chemother. 1990;34:1938–43. DOIPubMedGoogle Scholar
- Moyed HS, Bertrand KP. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol. 1983;155:768–75 .PubMedGoogle Scholar
- Witkowski B, Lelievre J, Nicolau-Travers ML, Iriart X, Njomnang Soh P, Bousejra-Elgarah F, Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs. PLoS ONE. 2012;7:e32620. DOIPubMedGoogle Scholar
- Benoit-Vical F, Lelievre J, Berry A, Deymier C, Dechy-Cabaret O, Cazelles J, Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. Antimicrob Agents Chemother. 2007;51:1463–72. DOIPubMedGoogle Scholar
- Desjardins RE, Canfield CJ, Haynes JD, Chulay JD. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother. 1979;16:710–8. DOIPubMedGoogle Scholar
- Dawson CC, Intapa C, Jabra-Rizk MA. “Persisters”: survival at the cellular level. PLoS Pathog. 2011;7:e1002121. DOIPubMedGoogle Scholar
- Chen N, LaCrue AN, Teuscher F, Waters NC, Gatton ML, Kyle DE, Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum. Antimicrob Agents Chemother. 2014;58:4773–81. DOIPubMedGoogle Scholar
- Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science. 2015;347:431–5. DOIPubMedGoogle Scholar
- Veiga MI, Ferreira PE, Schmidt BA, Ribacke U, Bjorkman A, Tichopad A, Antimalarial exposure delays Plasmodium falciparum intra-erythrocytic cycle and drives drug transporter genes expression. PLoS ONE. 2010;5:e12408. DOIPubMedGoogle Scholar
- Bohórquez EB, Juliano JJ, Kim HS, Meshnick SR. Mefloquine exposure induces cell cycle delay and reveals stage-specific expression of the pfmdr1 gene. Antimicrob Agents Chemother. 2013;57:833–9. DOIPubMedGoogle Scholar
- Peatey CL, Chavchich M, Chen N, Gresty KJ, Gray KA, Gatton ML, Mitochondrial membrane potential in a small subset of artemisinin-induced dormant Plasmodium falciparum parasites in vitro. J Infect Dis. 2015;212:426–34. DOIPubMedGoogle Scholar
- Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci U S A. 2004;101:4384–9. DOIPubMedGoogle Scholar
- Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A. 2011;108:11405–10. DOIPubMedGoogle Scholar
- Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998;79:55–87. DOIPubMedGoogle Scholar
- Robert A, Benoit-Vical F, Claparols C, Meunier B. The antimalarial drug artemisinin alkylates heme in infected mice. Proc Natl Acad Sci U S A. 2005;102:13676–80. DOIPubMedGoogle Scholar
- Conrad MD, Bigira V, Kapisi J, Muhindo M, Kamya MR, Havlir DV, Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS ONE. 2014;9:e105690. DOIPubMedGoogle Scholar
- Nyunt MH, Hlaing T, Oo HW, Tin-Oo LL, Phway HP, Wang B, Molecular assessment of artemisinin resistance markers, polymorphisms in the K13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Clin Infect Dis. 2015;60:1208–15. DOIPubMedGoogle Scholar
- Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis. 2015;211:1352–5 .PubMedGoogle Scholar
- Saunders DL, Vanachayangkul P, Lon C. Dihydroartemisinin-piperaquine failure in Cambodia. N Engl J Med. 2014;371:484–5. DOIPubMedGoogle Scholar
1Current affiliation: Universitas Gadjah Mada, Yogyakarta, Indonesia.
2Current affiliation: Institut Pasteur, Phnom Penh, Cambodia.