Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 2—February 2015

Evidence for Elizabethkingia anophelis Transmission from Mother to Infant, Hong Kong

Susanna K.P. Lau1, Alan K.L. Wu1, Jade L.L. Teng1, Herman Tse1, Shirly O.T. Curreem, Stephen K.W. Tsui, Yi Huang, Jonathan H.K. Chen, Rodney A. Lee, Patrick C.Y. Woo, and Kwok-Yung YuenComments to Author 
Author affiliations: The University of Hong Kong, Hong Kong (S.K.P. Lau, J.L.L. Teng, H. Tse, S.O.T. Curreem, Y. Huang, J.H.K. Chen, K.-Y. Yuen, P.C.Y. Woo); State Key Laboratory of Emerging Infectious Diseases, Research Centre of Infection and Immunology, Carol Yu Centre for Infection, Hong Kong (S.K.P. Lau, H. Tse, K.Y. Yuen, P.C.Y. Woo); Pamela Youde Nethersole Eastern Hospital, Hong Kong (A.K.L. Wu, R.A. Lee); School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (S.K.W. Tsui)

Main Article

Figure 2

Comparison of draft genome sequence data of the 3 Elizabethkingia anophelis strains from patients in Hong Kong (HKU36–38), E anophelis type strain R26T, and E. meningoseptica type strain ATCC 13253T. A) Distributions of predicted coding sequence function in genomes of E. anophelis strains HKU36–38, E. anophelis type strain R26T, and E. meningoseptica type strain ATCC 13253T according to SEED Subsystems are shown. The columns indicate the number of proteins in different subsystems. B) Circular re

Figure 2. Comparison of draft genome sequence data of the 3 Elizabethkingia anophelis strains from patients in Hong Kong (HKU36–38), E anophelis type strain R26T, and E. meningoseptica type strain ATCC 13253T. A) Distributions of predicted coding sequence function in genomes of E. anophelis strains HKU36–38, E. anophelis type strain R26T, and E. meningoseptica type strain ATCC 13253T according to SEED Subsystems are shown. The columns indicate the number of proteins in different subsystems. B) Circular representation of sequence comparison between the draft genome of strain HKU37 and other draft genomes as labeled. Comparison generated in Rapid Annotations using Subsystem Technology (27). Intensity of color indicates degree of protein identity.

Main Article

  1. Loman  NJ, Constantinidou  C, Chan  JZ, Halachev  M, Sergeant  M, Penn  CW, High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol. 2012;10:599606 . DOIPubMedGoogle Scholar
  2. Fournier  PE, Drancourt  M, Raoult  D. Bacterial genome sequencing and its use in infectious diseases. Lancet Infect Dis. 2007;7:71123 . DOIPubMedGoogle Scholar
  3. Shah  MA, Mutreja  A, Thomson  N, Baker  S, Parkhill  J, Dougan  G, Genomic epidemiology of Vibrio cholerae O1 associated with floods, Pakistan, 2010. Emerg Infect Dis. 2014;20:1320 . DOIPubMedGoogle Scholar
  4. Snyder  LA, Loman  NJ, Faraj  LA, Levi  K, Weinstock  G, Boswell  TC, Epidemiological investigation of Pseudomonas aeruginosa isolates from a six-year-long hospital outbreak using high-throughput whole genome sequencing. Euro Surveill. 2013;18:20611 .PubMedGoogle Scholar
  5. Harris  SR, Cartwright  EJ, Török  ME, Holden  MT, Brown  NM, Ogilvy-Stuart  AL, Whole-genome sequencing for analysis of an outbreak of methicillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13:1306 . DOIPubMedGoogle Scholar
  6. Walker  TM, Ip  CL, Harrell  RH, Evans  JT, Kapatai  G, Dedicoat  MJ, Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:13746. DOIPubMedGoogle Scholar
  7. Bryant  JM, Grogono  DM, Greaves  D, Foweraker  J, Roddick  I, Inns  T, Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381:155160. DOIPubMedGoogle Scholar
  8. Tse  H, Bao  JY, Davies  MR, Maamary  P, Tsoi  HW, Tong  AH, Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis. 2012;206:34151. DOIPubMedGoogle Scholar
  9. Brown  CC, Olsen  RJ, Fittipaldi  N, Morman  ML, Fort  PL, Neuwirth  R, Spread of virulent group A Streptococcus type emm59 from Montana to Wyoming, USA. Emerg Infect Dis. 2014;20:67981 . DOIPubMedGoogle Scholar
  10. Köser  CU, Holden  MT, Ellington  MJ, Cartwright  EJ, Brown  NM, Ogilvy-Stuart  AL, Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med. 2012;366:226775 . DOIPubMedGoogle Scholar
  11. Loman  NJ, Constantinidou  C, Christner  M, Rohde  H, Chan  JZ, Quick  J, A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA. 2013;309:150210. DOIPubMedGoogle Scholar
  12. Price  JR, Golubchik  T, Cole  K, Wilson  DJ, Crook  DW, Thwaites  GE, Whole-genome sequencing shows that patient-to-patient transmission rarely accounts for acquisition of Staphylococcus aureus in an intensive care unit. Clin Infect Dis. 2014;58:60918. DOIPubMedGoogle Scholar
  13. Pérez-Lago  L, Comas  I, Navarro  Y, González-Candelas  F, Herranz  M, Bouza  E, Whole genome sequencing analysis of intrapatient microevolution in Mycobacterium tuberculosis: potential impact on the inference of tuberculosis transmission. J Infect Dis. 2014;209:98108 . DOIPubMedGoogle Scholar
  14. Johnson  PD, Ballard  SA, Grabsch  EA, Stinear  TP, Seemann  T, Young  HL, A sustained hospital outbreak of vancomycin-resistant Enterococcus faecium bacteremia due to emergence of vanB E. faecium sequence type 203. J Infect Dis. 2010;202:127886 . DOIPubMedGoogle Scholar
  15. Kämpfer  P, Matthews  H, Glaeser  SP, Martin  K, Lodders  N, Faye  I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int J Syst Evol Microbiol. 2011;61:26705. DOIPubMedGoogle Scholar
  16. Kim  KK, Kim  MK, Lim  JH, Park  HY, Lee  ST. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol. 2005;55:128793. DOIPubMedGoogle Scholar
  17. Frank  T, Gody  JC, Nguyen  LB, Berthet  N, Le Fleche-Mateos  A, Bata  P, First case of Elizabethkingia anophelis meningitis in the Central African Republic. Lancet. 2013;381:1876. DOIPubMedGoogle Scholar
  18. Bobossi-Serengbe  G, Gody  JC, Beyam  NE, Bercion  R. First documented case of Chryseobacterium meningosepticum meningitis in Central African Republic. Med Trop (Mars). 2006;66:1824 .PubMedGoogle Scholar
  19. Teo  J, Tan  SY, Tay  M, Ding  Y, Kjelleberg  S, Givskov  M, First case of E anophelis outbreak in an intensive-care unit. Lancet. 2013;382:8556. DOIPubMedGoogle Scholar
  20. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Approved standard, 11th ed. M02–A11. Wayne (PA): The Institute; 2012.
  21. Lau  SK, Tang  BS, Curreem  SO, Chan  TM, Martelli  P, Tse  CW, Matrix-assisted laser desorption ionization–time of flight mass spectrometry for rapid identification of Burkholderia pseudomallei: importance of expanding databases with pathogens endemic to different localities. J Clin Microbiol. 2012;50:31423. DOIPubMedGoogle Scholar
  22. Woo  PC, Lau  SK, Teng  JL, Que  TL, Yung  RW, Luk  WK, L Hongkongensis study group. Association of Laribacter hongkongensis in community-acquired gastroenteritis with travel and eating fish: a multicentre case-control study. Lancet. 2004;363:19417. DOIPubMedGoogle Scholar
  23. Lau  SK, Curreem  SO, Lin  CC, Fung  AM, Yuen  KY, Woo  PC. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish. Int J Syst Evol Microbiol. 2013;63:25706. DOIPubMedGoogle Scholar
  24. Tse  H, Tsoi  HW, Leung  SP, Lau  SK, Woo  PC, Yuen  KY. Complete genome sequence of Staphylococcus lugdunensis strain HKU09–01. J Bacteriol. 2010;192:14712. DOIPubMedGoogle Scholar
  25. Woo  PC, Lau  SK, Tse  H, Teng  JL, Curreem  SO, Tsang  AK, The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats. PLoS Genet. 2009;5:e1000416. DOIPubMedGoogle Scholar
  26. Delcher  AL, Bratke  KA, Powers  EC, Salzberg  SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23:6739. DOIPubMedGoogle Scholar
  27. Aziz  RK, Bartels  D, Best  AA, DeJongh  M, Disz  T, Edwards  RA, The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. DOIPubMedGoogle Scholar
  28. Liu  B, Pop  M. ARDB—antibiotic resistance genes database. Nucleic Acids Res. 2009;37:D4437 . DOIPubMedGoogle Scholar
  29. Auch  AF, Klenk  HP, Göker  M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2:1428. DOIPubMedGoogle Scholar
  30. Dussurget  O. New insights into determinants of Listeria monocytogenes virulence. Int Rev Cell Mol Biol. 2008;270:1–38.
  31. Kreft  J, Vázquez-Boland  JA, Altrock  S, Dominguez-Bernal  G, Goebel  W. Pathogenicity islands and other virulence elements in Listeria. Curr Top Microbiol Immunol. 2002;264:10925 .PubMedGoogle Scholar
  32. Hoffman  JA, Badger  JL, Zhang  Y, Huang  SH, Kim  KS. Escherichia coli K1 aslA contributes to invasion of brain microvascular endothelial cells in vitro and in vivo. Infect Immun. 2000;68:50627. DOIPubMedGoogle Scholar
  33. Cheng  C, Chen  J, Fang  C, Xia  Y, Shan  Y, Liu  Y, Listeria monocytogenes aguA1, but not aguA2, encodes a functional agmatine deiminase: biochemical characterization of its catalytic properties and roles in acid tolerance. J Biol Chem. 2013;288:2660615. DOIPubMedGoogle Scholar
  34. Matyi  SA, Hoyt  PR, Hosoyama  A, Yamazoe  A, Fujita  N, Gustafson  JE. Draft genome sequences of Elizabethkingia meningoseptica. Genome Announc. 2013;1:e00444–13.
  35. Kukutla  P, Lindberg  BG, Pei  D, Rayl  M, Yu  W, Steritz  M, Draft genome sequences of Elizabethkingia anophelis strains R26T and Ag1 from the midgut of the malaria mosquito Anopheles gambiae. Genome Announc. 2013;1:e01030–13.
  36. Balm  MN, Salmon  S, Jureen  R, Teo  C, Mahdi  R, Seetoh  T, Bad design, bad practices, bad bugs: frustrations in controlling an outbreak of Elizabethkingia meningoseptica in intensive care units. J Hosp Infect. 2013;85:13440. DOIPubMedGoogle Scholar
  37. Quick  J, Constantinidou  C, Pallen  MJ, Oppenheim  B, Loman  NJ. Draft genome sequence of Elizabethkingia meningoseptica isolated from a traumatic wound. Genome Announc. 2014;2:e00355–14.
  38. Sarma  S, Kumar  N, Jha  A, Baveja  U, Sharma  S. Elizabethkingia meningosepticum: an emerging cause of septicemia in critically ill patients. J Lab Physicians. 2011;3:623. DOIPubMedGoogle Scholar
  39. Teo  J, Tan  SY, Liu  Y, Tay  M, Ding  Y, Li  Y, Comparative genomic analysis of malaria mosquito vector-associated novel pathogen Elizabethkingia anophelis. Genome Biol Evol. 2014;6:115865. DOIPubMedGoogle Scholar
  40. Holden  MT, Feil  EJ, Lindsay  JA, Peacock  SJ, Day  NP, Enright  MC, Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A. 2004;101:978691. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: January 20, 2015
Page updated: January 20, 2015
Page reviewed: January 20, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.