Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 10—October 2016
Dispatch

Chikungunya Virus in Febrile Humans and Aedes aegypti Mosquitoes, Yucatan, Mexico

Nohemi Cigarroa-Toledo, Bradley J. Blitvich, Rosa C. Cetina-Trejo, Lourdes G. Talavera-Aguilar, Carlos M. Baak-Baak, Oswaldo M. Torres-Chablé, Md-Nafiz Hamid, Iddo Friedberg, Pedro González-Martinez, Gabriela Alonzo-Salomon, Elsy P. Rosado-Paredes, Nubia Rivero-Cárdenas, Guadalupe C. Reyes-Solis, Jose A. Farfan-Ale, Julian E. Garcia-Rejon, and Carlos Machain-WilliamsComments to Author 
Author affiliations: Universidad Autonoma de Yucatan, Merida, Mexico (N. Cigarroa-Toledo, R.C. Cetina-Trejo, L.G. Talavera-Aguilar, C.M. Baak-Baak, O.M. Torres-Chablé, P. González-Martinez, G. Alonzo-Salomon, E.P. Rosado-Paredes, N. Rivero-Cárdenas, G.C. Reyes-Solis, J.A. Farfan-Ale, J.E. Garcia-Rejon, C. Machain-Williams); Iowa State University, Ames, Iowa, USA (B.J. Blitvich, M. Hamid, I. Friedberg)

Main Article

Figure

Phylogenetic analysis of chikungunya virus (CHIKV) isolates from Yucatan, Mexico. Analysis was based on a 3,744-nt structural gene region (capsid-E3-E2-6K-E1) of 63 CHIKV isolates, including the 14 isolates from Yucatan. Sequences were aligned by using MUSCLE (11), and the tree was constructed by using the neighbor-joining algorithm as implemented in PHYLIP (12) and using ETE3 (Environment for Tree Exploration 3) (13). Isolates are identified by GenBank accession number, country, and year isolat

Figure. Phylogenetic analysis of chikungunya virus (CHIKV) isolates from Yucatan, Mexico. Analysis was based on a 3,744-nt structural gene region (capsid-E3-E2-6K-E1) of 63 CHIKV isolates, including the 14 isolates from Yucatan. Sequences were aligned by using MUSCLE (11), and the tree was constructed by using the neighbor-joining algorithm as implemented in PHYLIP (12) and using ETE3 (Environment for Tree Exploration 3) (13). Isolates are identified by GenBank accession number, country, and year isolated. CHIKV isolates from the Yucatan are shown in bold. Bootstrap values were generated by using 1,000 repetitions and normalized on a scale of 0–1. Bootstrap values for select branches are shown. 6K, membrane-associated peptide; E, envelope; ECSA, East/Central/South African lineage; IOL, Indian Ocean lineage.

Main Article

References
  1. Weaver  SC, Forrester  NL. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res. 2015;120:329. DOIPubMedGoogle Scholar
  2. Powers  AM. Risks to the Americas associated with the continued expansion of chikungunya virus. J Gen Virol. 2015;96:15. DOIPubMedGoogle Scholar
  3. Rivera-Ávila  RC. Chikungunya fever in Mexico: confirmed case and notes on the epidemiologic response [in Spanish]. Salud Publica Mex. 2014;56:4024.PubMedGoogle Scholar
  4. Díaz-Quinonez  JA, Ortiz-Alcantara  J, Fragoso-Fonseca  DE, Garces-Ayala  F, Escobar-Escamilla  N, Vazquez-Pichardo  M, Complete genome sequences of chikungunya virus strains isolated in Mexico: first detection of imported and autochthonous cases. Genome Announc. 2015;3:e0030015. DOIPubMedGoogle Scholar
  5. Kautz  TF, Diaz-Gonzalez  EE, Erasmus  JH, Malo-Garcia  IR, Langsjoen  RM, Patterson  EI, Chikungunya virus as cause of febrile illness outbreak, Chiapas, Mexico, 2014. Emerg Infect Dis. 2015;21:20703. DOIPubMedGoogle Scholar
  6. Díaz-González  EE, Kautz  TF, Dorantes-Delgado  A, Malo-Garcia  IR, Laguna-Aguilar  M, Langsjoen  RM, First report of Aedes aegypti transmission of chikungunya virus in the Americas. Am J Trop Med Hyg. 2015;93:13259. DOIPubMedGoogle Scholar
  7. Darsie  RF Jr. A survey and bibliography of the mosquito fauna of Mexico (Diptera: Culicidae). J Am Mosq Control Assoc. 1996;12:298306.PubMedGoogle Scholar
  8. Lanciotti  RS, Calisher  CH, Gubler  DJ, Chang  GJ, Vorndam  AV. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol. 1992;30:54551.PubMedGoogle Scholar
  9. Tsetsarkin  KA, Weaver  SC. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS Pathog. 2011;7:e1002412. DOIPubMedGoogle Scholar
  10. Tsetsarkin  KA, Vanlandingham  DL, McGee  CE, Higgs  S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3:e201. DOIPubMedGoogle Scholar
  11. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  12. Felsenstein  J. PHYLIP: Phylogeny Inference Package (version 3.2). Cladistics. 1989;5:1646.
  13. Huerta-Cepas  J, Dopazo  J, Gabaldon  T. ETE: a python environment for tree exploration. BMC Bioinformatics. 2010;11:24. DOIPubMedGoogle Scholar
  14. Chang  S-F, Su  C-L, Shu  P-Y, Yang  C-F, Liao  T-L, Cheng  C-H, Concurrent isolation of chikungunya virus and dengue virus from a patient with coinfection resulting from a trip to Singapore. J Clin Microbiol. 2010;48:45869. DOIPubMedGoogle Scholar
  15. Parreira  R, Centeno-Lima  S, Lopes  A, Portugal-Calisto  D, Constantino  A, Nina  J. Dengue virus serotype 4 and chikungunya virus coinfection in a traveller returning from Luanda, Angola, January 2014. Euro Surveill. 2014;19:20730. DOIPubMedGoogle Scholar

Main Article

Page created: September 19, 2016
Page updated: September 19, 2016
Page reviewed: September 19, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external