

Page 1 of 10

DOI: http://dx.doi.org/10.3201/eid2208.160270

Use of Unamplified RNA/cDNA-Hybrid
Nanopore Sequencing for Rapid Detection

and Characterization of RNA Viruses

Technical Appendix

Viral Growth and RNA Isolation

To determine the ability of nanopore sequencing to provide rapid genomic data on RNA

virus pathogens, a workflow was adopted and developed from cDNA sequencing protocols

created by Oxford Nanopore Technologies (Oxford, UK) (MAP SEQ-002) (Figure 1, panel A).

In brief, , Venezuelan equine encephalitis virus (VEEV) vaccine strain TC-83 and Ebola virus

(EBOV) variant Makona isolate C05 stock IRF0137 (EBOV/Mak-C05) were grown and RNA

isolated from clarified cell-culture supernatants. VEEV TC-83 was prepared from stocks derived

from United States Army Venezuelan equine encephalitis virus TC-83 stocks. One MOI of

VEEV TC-83 was adsorbed on Vero E6 monolayers for 2 hours. After 48 h of incubation in

Minimum Essential Medium-α + 10% fetal bovine serum (GIBCO, Gaithersburg, MD;

ThermoFisher Scientific, Pittsburgh, PA), cell culture supernatants were collected and clarified

by centrifugation at 650 × g for 10 min at 4°C. RNA was isolated from cell-culture supernatant

using the QIAamp MinElute virus spin kit (QIAGEN) for isolated VEEV particles.

The C05 isolate of the Makona variant of Ebola virus (full designation: Ebola

virus/H.sapiens-tc/GIN/2014/Makona-C05, abbreviation: EBOV/Mak-C05) was isolated in 2014

in Vero E6 cells and kindly provided by Dr. Gary P. Kobinger (Public Health Agency of Canada,

Winnipeg, Canada, BioSample: SAMN03611815, internal reference IRF0135). Vero E6 cells

were used to propagate EBOV by two additional tissue culture passages in Vero E6 cells using

Minimum Essential Medium-α, GlutaMAX, no nucleosides (GIBCO, ThermoFisher Scientific)

supplemented with 2% US-origin, certified, heat-inactivated fetal bovine serum (HI-FBS,

GIBCO, ThermoFisher Scientific). Following harvest, HI-FBS was QS'd to 10% final

concentration before cryopreservation. GenBank accession no. KX000400 BioSample:

http://dx.doi.org/10.3201/eid2208.160270

Page 2 of 10

SAMN04490241, internal reference IRF0137. RNA was isolated from virus preps in 1:4

supernatant:Trizol after RNA extraction with cleanup using RNeasy MinElute cleanup kit

(QIAGEN).

RNA/cDNA-Hybrid Sequencing Preparations

A total of 250 ng of VEEV or EBOV RNA were either directly added to a single-strand

cDNA reaction (VEEV) primed using poly-dT primers provided by Oxford Nanopore

Technologies (ONT; DEV-MAP003) or poly(A)-tailed (Escherichia coli poly(A) polymerase,

(New England BioLabs) before addition (EBOV). cDNA synthesis was performed using

SuperScript II reverse transcription 18064–014 (Life Technologies, Carlsbad, CA) per standard

manufacturers protocols at 50°C for 50 min, followed by 70°C for 15 min. After cDNA

synthesis, cDNA/RNA hybrids were prepared for nanopore sequencing (DEV-MAP003) by

purifying RNA/cDNA hybrids using 0.7× Agencourt AmPure XP beads (Beckman Coulter,

Fullerton, CA) followed by 2× 80% ethanol washes. Purified RNA/cDNA hybrids were then

incubated with binding buffer for 45 min (ONT; DEV-MAP003), motor protein for 5 min (ONT;

DEV-MAP003), then loading buffer for 5 min (ONT; DEV-MAP003) per the manufacturers

protocol (ONT; DEV-MAP003). Prepared libraries were then diluted per manufacturers protocol

with water and fuel mix (ONT; DEV-MAP003) to a final volume of 300 μl, with 150 μL

sequencing solution loaded with p1000 tips onto individual MinION flow cells (7.3) for

sequencing.

Data Collection and Analysis

Data were collected in real time using Oxford Nanopore software (VEEV: MinKNOW:

0.50.1.15, Metrichor: 1.13.1; EBOV: MinKNOW: 0.48.2.14, Metrichor: 1.10.1) and analyzed for

genome alignment using LAST-648 (1) (lastal) with the options (-s 2 -T 0 -Q 0 -a 1).

Duplications in the alignments were removed using last-map-probs (1). These methods are

identical to ones used for previous work with amplicon and native nucleic acid sequencing (2–6).

Nanopore reads were aligned against the Viral Genomes database (7) of viral reference genome

sequences (data for complete genomes: Viruses (taxid 10239); 6,635 total entires, with the 2

stock genomes added from this study) and top hits and alignment statistics were generated.

Page 3 of 10

VEEV reads were also aligned against a database of alphavirus genome sequences (1,440 total

entries; detailed below). The read files, associated data and scripts are available at GenBank EU

accession numbers SAMEA3865262 (VEEV) and SAMEA3865263 (EBOV) for nanopore data

and NCBI BioProject PRJNA311755 and GenBank accession no. KX000400 for the EBOV

reference. Sample use of Pathosphere (8) for analysis is publically available at

www.pathosphere.org under the manuscript header. One Codex analysis (9) is also publically

available at https://app.onecodex.com/analysis/public/57c08743784b41d3. All reference files

used for the analysis above are available as ‘viralRefSeq.fa’ and ‘all_alphavirus_complete.fasta’

attached here. Scripts are available below in addition to being hosted at www.pathosphere.org.

References

1. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence

comparison. Genome Res. 2011;21(3):487–93. http://dx.doi.org/10.1101/gr.113985.110 PMID:

21209072

2. Hoenen T, Groseth A, Rosenke K, Fischer RJ, Hoenen A, Judson SD, et al. Nanopore sequencing as a

rapidly deployable Ebola outbreak tool. Emerg Infect Dis. 2016;22; Epub ahead of print.

3. Laver TW, Caswell RC, Moore KA, Poschmann J, Johnson MB, Owens MM, et al. Pitfalls of

haplotype phasing from amplicon-based long-read sequencing. Sci Rep. 2016;6:21746.

http://dx.doi.org/10.1038/srep21746 PMID: 26883533

4. Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, et al. Assessing the performance

of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif. 2015;3:1–8.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691839/ PMID: 26753127

5. Wang J, Moore NE, Deng Y-M, Eccles DA, Hall RJ. MinION nanopore sequencing of an influenza

genome. Front Microbiol. 2015;6:766. http://dx.doi.org/10.3389/fmicb.2015.00766 PMID:

26347715

6. Quick J, Ashton P, Calus S, Chatt C, Gossain S, Hawker J, et al. Rapid draft sequencing and real-

time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 2015;16:114.

http://www.ncbi.nlm.nih.gov/pubmed/26025440 PMID: 26025440

7. Brister JR, Ako-adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res.

2014;43:D571–7. http://www.ncbi.nlm.nih.gov/pubmed/25428358

http://dx.doi.org/10.1093/nar/gku1207

http://dx.doi.org/10.1101/gr.113985.110
http://dx.doi.org/10.1038/srep21746
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691839/
http://dx.doi.org/10.3389/fmicb.2015.00766
http://www.ncbi.nlm.nih.gov/pubmed/26025440
http://www.ncbi.nlm.nih.gov/pubmed/25428358
http://dx.doi.org/10.1093/nar/gku1207

Page 4 of 10

8. Kilianski A, Carcel P, Yao S, Roth P, Schulte J, Donarum GB, et al. Pathosphere.org: pathogen

detection and characterization through a web-based, open source informatics platform. BMC

Bioinformatics. 2015;16:416. http://dx.doi.org/10.1186/s12859-015-0840-5 PMID: 26714571

9. Minot SS, Krumm N, Greenfield NB. One Codex: A sensitive and accurate data platform for genomic

microbial identification. bioRxiv. 2015 Sep 28; Epub ahead of print.

http://biorxiv.org/content/early/2015/09/28/027607

Scripts

#!/bin/bash # last_time_alignment_pipeline

This is the main script that aligns reads

using LAST according to timestamps #

produced by the ExtractTimesFromReads

program. It converts the fast5 files to a #

fastq, extracts only the reads that were

produced before specified time argument,

prepares the reference database for last,

aligns and then outputs the top 10 reference

hits from

the database.

Dependencies that must be installed:

LAST, JAVA, perl, bash, HDF5 libraries.

This program was developed exclusively

with government funds by

OptiMetrics, Inc. in support of U.S. Army

Edgewood Chemical Biological

Center.

Copyright (C) 2016 OptiMetrics, Inc.

This program is free software: you can

redistribute it and/or modify

it under the terms of the GNU General

Public License as published by

the Free Software Foundation, version 3 of

the License.

This program is distributed in the hope

that it will be useful,

but WITHOUT ANY WARRANTY;

without even the implied warranty of

MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the

GNU General Public License for more

details.

You should have received a copy of the

GNU General Public License

along with this program. If not, see

<http://www.gnu.org/licenses/>.

set -o nounset;

set -o errexit;

args=($@);

len=${#args[@]};

min_scripts=”$(cd “$(dirname

“${BASH_SOURCE[0]}”)” && pwd)”;

if [$len -lt 4] || [$len -gt 4]

then

echo “Usage:

last_time_alignment_pipeline.sh <fast5

input directory> <reference fasta> <time in

seconds> <output directory>”

exit;

fi

fast5_dir=${args[0]};

reference=${args[1]};

time=${args[2]};

output_dir=${args[3]};

mkdir -p $output_dir;

cd $output_dir;

reads=$output_dir/reads.fq;

if [! -e $reads]

then

echo “converting fast5 to fastq”;

ls $fast5_dir/*.fast5 | xargs -I [] java -jar -

Djava.library.path=$min_scripts/lib

http://dx.doi.org/10.1186/s12859-015-0840-5
http://biorxiv.org/content/early/2015/09/28/027607

Publisher: CDC; Journal: Emerging Infectious Diseases

Article Type: Dispatch; Volume: 22; Issue: 8; Year: 2016; Article ID: 16-0270

DOI: 10.3201/eid2208.160270; TOC Head: Dispatch

Page 5 of 10

$min_scripts/Fast5toFastq.jar [] >

$output_dir/reads.fq

fi

timestamps=$output_dir/timestamps.csv;

if [! -e $timestamps]

then

echo “extracting timestamps from fast5”;

ls $fast5_dir/*.fast5 | xargs -I [] java -

Djava.library.path=$min_scripts/lib -cp

$min_scripts/lib/:$min_scripts/source

extracttimesfromreads.ExtractTimesFromRe

ads [] > $timestamps;

fi

echo “creating last db reference ...”;

lastdb ref $reference;

echo “filtering reads file by time ...”;

perl $min_scripts/filter_reads_by_time.pl

$time $time $timestamps $reads

$output_dir/reads.$time.fna

echo “running last alignment ...”;

lastal -r1 -a1 -b1 -q1 -Q0 ref

$output_dir/reads.$time.fna >

$output_dir/align.$time.maf

echo “running last-map-probs”;

/common/bin/last-658/last-map-probs

$output_dir/align.$time.maf >

$output_dir/align.$time.nodups.maf

echo “getting top scores ...”;

perl

$min_scripts/findTopAlignmentScores.pl

$output_dir/align.$time.nodups.maf

$output_dir/topscores.$time.txt

echo “DONE!”;

#Log

/**

* Fast5toFastq

*

* This program extracts the fastq data from a

fast5 file that has been

* processed using the Metrichor analysis

from Oxford Nanopore.

*

* This program was developed exclusively

with government funds by

* OptiMetrics, Inc. in support of U.S. Army

Edgewood Chemical Biological

* Center.

*

* Copyright (C) 2016 OptiMetrics, Inc.

*

* This program is free software: you can

redistribute it and/or modify

* it under the terms of the GNU General

Public License as published by

* the Free Software Foundation, version 3 of

the License.

* This program is distributed in the hope

that it will be useful,

* but WITHOUT ANY WARRANTY;

without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the

* GNU General Public License for more

details.

*

* You should have received a copy of the

GNU General Public License

* along with this program. If not, see

<http://www.gnu.org/licenses/>.

*

*/

package fast5tofastq;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.util.StringTokenizer;

import ncsa.hdf.object.h5.*; // include the

HDF5 object package

import ncsa.hdf.hdf5lib.*; // include the Java

HDF5 interface

*

*/

public class Fast5toFastq

{

public static void main(String[] argv)

{

if (argv.length != 1)

{

System.out.println(“Usage: Fast5toFastq

<fast5_filename>”);

System.out.println(“Output prints to

STDOUT”);

Publisher: CDC; Journal: Emerging Infectious Diseases

Article Type: Dispatch; Volume: 22; Issue: 8; Year: 2016; Article ID: 16-0270

DOI: 10.3201/eid2208.160270; TOC Head: Dispatch

Page 6 of 10

try

{

}

catch (Exception e)

{

}

return;

}

// create an H5File object

H5File h5file = new H5File(argv[0],

HDF5Constants.H5F_ACC_RDONLY);

try

{

BufferedReader reader = null;

String path =

Fast5toFastq.class.getProtectionDomain().ge

tCodeSource().getLocation().toURI().getPat

h();

File configFile = new

File(path.substring(0,path.lastIndexOf(“/”)+

1) + “fast5tofastq.conf”);

try

{

reader = new BufferedReader(new

FileReader(configFile));

}

catch (Exception e)

{

System.out.println(“Config file

fast5tofastq.conf must be in the same

location as the fast5tofastq jar file.”);

return;

}

h5file.open();

while (reader.ready())

{

String fastqPath = reader.readLine();

// open file and retrieve the file structure

try

{

H5ScalarDS obj = (H5ScalarDS)

h5file.get(fastqPath);

String [] s = (String [])obj.read();

for(int i = 0; i < s.length; i++)

System.out.println(s[i]);

}

catch (Exception e)

{

// This path doesn't exist in the file. Do

nothing, and move on.

}

}

reader.close();

}

catch (Exception ex)

{

System.err.println(ex);

}

try { h5file.close(); }

catch (Exception ex) {}

}

}

/**

* ExtractTimesFromReads

*

* This program extracts the read names and

read times from a fast5 file

* that has been processed using the

Metrichor analysis from Oxford Nanopore.

*

* This program was developed exclusively

with government funds by

* OptiMetrics, Inc. in support of U.S. Army

Edgewood Chemical Biological

* Center.

*

* Copyright (C) 2016 OptiMetrics, Inc.

*

* This program is free software: you can

redistribute it and/or modify

* it under the terms of the GNU General

Public License as published by

* the Free Software Foundation, version 3 of

the License.

* This program is distributed in the hope

that it will be useful,

* but WITHOUT ANY WARRANTY;

without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the

* GNU General Public License for more

details.

Publisher: CDC; Journal: Emerging Infectious Diseases

Article Type: Dispatch; Volume: 22; Issue: 8; Year: 2016; Article ID: 16-0270

DOI: 10.3201/eid2208.160270; TOC Head: Dispatch

Page 7 of 10

*

* You should have received a copy of the

GNU General Public License

* along with this program. If not, see

<http://www.gnu.org/licenses/>.

*

*/

package extracttimesfromreads;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.util.List;

import ncsa.hdf.object.h5.*; // include the

HDF5 object package

import ncsa.hdf.hdf5lib.*; // include the Java

HDF5 interface

import ncsa.hdf.object.Attribute;

public class ExtractTimesFromReads

{

public static void main(String[] argv)

{

if (argv.length != 1)

{

System.out.println(“Usage:

ExtractTimesFromReads

<fast5_filename>”);

System.out.println(“Output prints to

STDOUT”);

System.exit(0);

}

// create an H5File object

H5File h5file = new H5File(argv[0],

HDF5Constants.H5F_ACC_RDONLY);

String name=””;

try

{

BufferedReader reader = null;

String path =

ExtractTimesFromReads.class.getProtection

Domain().getCodeSource().getLocation().to

URI().getPath();

File configFile = new

File(path.substring(0,path.lastIndexOf(“/”)+

1) + “fast5tofastq.conf”);

try

{

reader = new BufferedReader(new

FileReader(configFile));

}

catch (Exception e)

{

System.out.println(“Config file

fast5tofastq.conf must be in the same

location as the fast5tofastq jar file.”);

return;

}

h5file.open();

while (reader.ready())

{

String fastqPath = reader.readLine();

// open file and retrieve the file structure

try

{

H5ScalarDS obj = (H5ScalarDS)

h5file.get(fastqPath);

String [] s = (String [])obj.read();

name = s[0].substring(0, s[0].indexOf('\n'));

}

catch (Exception e)

{

// This path doesn't exist in the file. Do

nothing, and move on.

}

}

reader.close();

H5Group obj = null;

for(int i = 0; i < 1000; i++)

{

String readString = “Read_”+ i;

//System.err.println(readString);

obj = (H5Group)

h5file.get(“Analyses/EventDetection_000/R

eads/”+readString);

if(obj !=null)

{

break;

}

}

if(obj == null)

{

//System.err.println(name);

Publisher: CDC; Journal: Emerging Infectious Diseases

Article Type: Dispatch; Volume: 22; Issue: 8; Year: 2016; Article ID: 16-0270

DOI: 10.3201/eid2208.160270; TOC Head: Dispatch

Page 8 of 10

throw new Exception(“Read does not

exist.”);

}

List<Attribute> list = obj.getMetadata();

long startTime= 1;

long duration= 1;

for(int i = 0; i < list.size(); i++)

{

if (list.get(i).toString().equals(“start_time”))

{

startTime =

((long[])list.get(i).getValue())[0];

//System.err.println(“start_time” + ” = ” +

startTime);

}

if (list.get(i).toString().equals(“duration”))

{

duration = ((long[])list.get(i).getValue())[0];

//System.err.println(“duration” + ” = ” +

duration);

}

}

obj = (H5Group)

h5file.get(“UniqueGlobalKey/channel_id”);

list = obj.getMetadata();

double samplingRate = 1;

for(int i = 0; i < list.size(); i++)

{

if

(list.get(i).toString().equals(“sampling_rate”

))

{

samplingRate =

((double[])list.get(i).getValue())[0];

//System.err.println(“sampling_rate” + ” = ”

+ samplingRate);

}

}

double time= ((double)(startTime +

duration))/samplingRate;

System.out.println(name + “,”+time);

}

catch (Exception ex)

{

System.err.println(name);

System.err.println(ex);

ex.printStackTrace();

}

try { h5file.close(); }

catch (Exception ex) {}

}

}

#!/usr/bin/perl

Filter_reads_by_time

This program will pull out reads that were

generated before the specified time

by the specified range and output it to a

fasta file.

This program was developed exclusively

with government funds by

OptiMetrics, Inc. in support of U.S. Army

Edgewood Chemical Biological

Center.

Copyright (C) 2016 OptiMetrics, Inc.

This program is free software: you can

redistribute it and/or modify

it under the terms of the GNU General

Public License as published by

the Free Software Foundation, version 3 of

the License.

This program is distributed in the hope

that it will be useful,

but WITHOUT ANY WARRANTY;

without even the implied warranty of

MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the

GNU General Public License for more

details.

You should have received a copy of the

GNU General Public License

along with this program. If not, see

<http://www.gnu.org/licenses/>.

eval \'exec /usr/bin/perl -S $0 “$@”'

if 0; # not running under some shell

use strict;

Publisher: CDC; Journal: Emerging Infectious Diseases

Article Type: Dispatch; Volume: 22; Issue: 8; Year: 2016; Article ID: 16-0270

DOI: 10.3201/eid2208.160270; TOC Head: Dispatch

Page 9 of 10

use warnings;

my $len=scalar(@ARGV);

if ($len < 5 || $len > 6){

&printUsage();

}

my $time=$ARGV[0];

my $range=$ARGV[1];

my $timestamps_csv=$ARGV[2];

my $reads_input=$ARGV[3];

my $reads_output=$ARGV[4];

sub printUsage {

print STDOUT “Usage:

filter_sam_by_time.pl <time> <range>

<timestamps_csv> <sam_input>

<sam_output>\n”; exit(1);

}

my %tstamps;

Program runs here ###

open(TIME,”<$timestamps_csv”);

while(<TIME>){

my $ln=$_;

chomp $ln;

if($ln=~m/^([^\,]+)\,(.*)$/){

my $sid=$1;

my $tstamp=$2;

$sid=~s/_strand//g;

if($tstamp<$time && $tstamp>=($time-

$range)){

$tstamps{$sid}=$tstamp;

}

}

} close TIME;

open(READSIN,”<$reads_input”);

open(READSOUT,”>$reads_output”);

while(<READSIN>){

my $ln=$_;

chomp $ln;

my $readName=$ln;

if(defined($tstamps{$readName})){

$ln=~s/^\@/\>/;

print READSOUT $ln.”\n”;

$ln=<READSIN>;

chomp $ln;

print READSOUT $ln.”\n”;

my $null=<READSIN>;

$null=<READSIN>;

}

}

close READSIN;

close READSOUT;

#!/usr/bin/perl

findTopAlignmentScores

This program pools the scores of each last

alignment by reference.

It then picks the top 10 references based

on their scores.

This program was developed exclusively

with government funds by

OptiMetrics, Inc. in support of U.S. Army

Edgewood Chemical Biological

Center.

Copyright (C) 2016 OptiMetrics, Inc.

This program is free software: you can

redistribute it and/or modify

it under the terms of the GNU General

Public License as published by

the Free Software Foundation, version 3 of

the License.

This program is distributed in the hope

that it will be useful,

but WITHOUT ANY WARRANTY;

without even the implied warranty of

MERCHANTABILITY or FITNESS FOR

A PARTICULAR PURPOSE. See the

GNU General Public License for more

details.

You should have received a copy of the

GNU General Public License

along with this program. If not, see

<http://www.gnu.org/licenses/>.

eval \'exec /usr/bin/perl -S $0 “$@”'

if 0; # not running under some shell

use strict;

use warnings;

my $len=scalar(@ARGV);

Publisher: CDC; Journal: Emerging Infectious Diseases

Article Type: Dispatch; Volume: 22; Issue: 8; Year: 2016; Article ID: 16-0270

DOI: 10.3201/eid2208.160270; TOC Head: Dispatch

Page 10 of 10

if ($len < 2 || $len > 2){

&printUsage();

}

my $alignment=$ARGV[0];

my $output=$ARGV[1];

sub printUsage {

print STDOUT “Usage:

findTopAlignmentScores.pl <alignment>

<output>\n”; exit(1);

}

open(FIN,”<$alignment”);

my $last_score=0;

my %scores;

my $got_score=0;

while(<FIN>){

my $line=$_;

chomp $line;

if($line=~m/^a score\=(\d+)/){

$last_score=$1;

$got_score=1;

}

elsif($line=~m/^s\ ([^\]+\)/ &&

$got_score){

$got_score=0;

my $gi=$1;

if(!defined($scores{$gi})){

$scores{$gi}=$last_score;

}else{

$scores{$gi}+=$last_score;

}

}

}

close FIN;

open(FOUT,”>$output”);

my @keys=

sort{$scores{$b}<=>$scores{$a}}

keys(%scores);

my @vals=@scores{@keys};

for(my $i=0; $i<10; $i++){

if(defined($keys[$i])){

print FOUT $keys[$i].” score\

“.$vals[$i].”\n”;

}

}

close FOUT;

