Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 1—January 2017
Dispatch

Increased Invasive Pneumococcal Disease, North East England, UK

Author affiliations: Public Health England, Newcastle upon Tyne, UK (C. Houseman, K.E. Chapman, D. Wilson, R. Gorton); Public Health England, Leeds, UK (G.J. Hughes)

Cite This Article

Abstract

Since April 2014, invasive pneumococcal disease incidence has increased substantially across North East England, United Kingdom, reversing the decline that followed the 2006 introduction of pneumococcal conjugate vaccines. Significant increases occurred in 23-valent polysaccharide vaccine serotypes and nonvaccine serotypes. Trends in other regions and long-term effects of multivalent vaccines require further investigation.

The UK routine immunization program includes 2 vaccines against pneumococcal disease (1). The 7-valent pneumococcal conjugate vaccine (PCV7), introduced in 2006 and replaced by the 13-valent pneumococcal conjugate vaccine (PCV13) in 2010, is given to infants 2, 4, and 12 months of age (1). The 23-valent pneumococcal polysaccharide vaccine (PPV23) has been recommended for persons in clinically defined risk groups >2 years of age since 1992 and for all persons >65 years of age since 2003 (1). National coverage of PCV at 12 months reached 90% by epidemiologic year (April 1–March 31, indicated by slashes in year ranges) 2008/2009 and remains >93% (2). Since 2009/2010, coverage in North East England (NEE) has been >95% (2). By 2007/2008, PPV coverage in England and NEE reached 70% among all persons >65 years of age and remained there through March 31, 2016 (3).

Invasive pneumococcal disease (IPD) incidence in NEE declined significantly after the introduction of PCV7 and subsequently PCV13 among persons in vaccinated and nonvaccinated age groups, consistent with other countries and the United Kingdom (48). This decline coincided with emergence of less frequent nonvaccine type (NVT) serotypes, reinforcing the need for continued IPD surveillance (48). Using enhanced surveillance data for April 1, 2006, through March 31, 2016, we detected increased IPD incidence in NEE.

The Study

In April 2006, the NEE Invasive Pneumococcal Disease Enhanced Surveillance System was established (4) and gathered data from microbiology services, hospitals and primary care clinicians, and the Public Health England Respiratory and Vaccine Preventable Bacteria Reference Unit (9). We compared IPD incidence during the 2015/2016 epidemiologic year with that from previous epidemiologic years and with the average annual incidence during the 3 epidemiologic years covering April 1, 2011–March 31, 2014. We analyzed IPD incidence across all cases combined and cases stratified by vaccine serotype subgroups: PCV7/PCV13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 23F); PPV23-exclusive serotypes (2, 8, 9N, 10A, 11A, 12F, 15B [including 15B/C], 17F, 20, 22F, 33F); and NVT serotypes (1). We examined IPD incidence trends by specific serotype during April 2013–March 2016 by using incidence rate ratios (IRRs), estimated by using negative binomial regression (with counts per calendar quarter, robust standard errors, and offset with the natural logarithm of the NEE population [10]).

For each epidemiologic year spanning April 1, 2011–March 31, 2014, an average of 211 IPD cases (8.1 cases/100,000 population) were reported. In contrast, during 2015/2016, a total of 298 cases (11.4/100,000) were reported. This incidence was significantly greater than that for 2014/2015 (230 cases, 8.8/100,000; IRR 1.30, 95% CI 1.09–1.55, p = 0.003); significantly greater than the average during the 3 epidemiologic years spanning 2011–2014 (IRR 1.40, 95% CI 1.17–1.68, p<0.001); and similar to 2006/2007 (11.91/100,000; IRR 0.96, 95% CI 0.81–1.12, p = 0.577) (Table 1). A similar trend occurred among patients 5–64 years of age (2015/2016 vs. 2014/2015 IRR 1.32, 95% CI 1.01–1.73, p = 0.036; 2015/2016 vs. 2011–2014 IRR 1.43, 95% CI 1.09–1.88, p = 0.008; 2015/2016 vs. 2006/2007 IRR 0.97, 95% CI 0.76–1.24, p = 0.796) and patients >65 years of age (2015/2016 vs. 2014/2015 IRR 1.25, 95% CI 0.98–1.61, p = 0.067; 2015/2016 vs. 2011–2014 IRR 1.40, 95% CI 1.08–1.82, p = 0.008; 2015/2016 vs. 2006/2007 IRR 0.98, 95% CI 0.77–1.25, p = 0.892) (Table 1). Among patients <5 years of age, incidence during 2015/2016 remained significantly lower than that during 2006/2007 (IRR 0.44, 95% CI 0.23–0.80, p = 0.004), similar to that during 2011–2014 (IRR 0.99, 95% CI 0.48–2.07, p = 0.985), and did not significantly increase during 2014/2015 (IRR 1.55, 95% CI 0.68–3.65, p = 0.265) (Table 1).

Figure 1

Thumbnail of Number and incidence (no. cases/100,000 population) of invasive pneumococcal disease cases by vaccine type serotype subgroups in North East England, by quarter April 2006–March 2016. A) All cases. B) Cases caused by 13-valent pneumococcal conjugate vaccine serotypes. C) Cases caused by 23-valent pneumococcal polysaccharide vaccine serotypes, excluding those also contained in PCV13. D) Cases caused by nonvaccine types. Bars show numbers of cases. Lines indicate incidence: error bars

Figure 1. Number and incidence (no. cases/100,000 population) of invasive pneumococcal disease cases by vaccine type serotype subgroups in North East England, by quarter April 2006–March 2016. A) All cases. B) Cases caused...

Figure 2

Thumbnail of Trends in incidence of serotypes causing invasive pneumococcal disease associated with recent significantly increasing incidence in North East England, by quarter, April 2006–March 2016. Panels show trends by individual serotypes: A) serotype 8; B) serotype 9N; C) serotype 12F; D) serotype 15A; E) serotype 23F; F) serotype 35F. Bars show observed numbers of cases; broken lines show the percentage of all serotype group cases (A–C PPV23–13; D–F NVT); solid lines show counts of cases p

Figure 2. Trends in incidence of serotypes causing invasive pneumococcal disease associated with recent significantly increasing incidence in North East England, by quarter, April 2006–March 2016. Panels show trends by individual serotypes: A)...

The recent rise in IPD is largely attributable to increased cases caused by PPV23-exclusive serotypes (2015/2016 vs. 2011–2014 IRR 2.42, 95% CI 1.80–3.29, p<0.001; 2015/2016 vs. 2006/2007 IRR 3.04, 95% CI 2.20–4.27, p<0.001), notable from 2014/2015 on (Figure 1). Of the 11 serotypes exclusive to PPV23, significant increasing trends were demonstrated by serotypes 8, 9N, and 12F from 2013/2014 on (Table 2; Figure 2). This trend was observed among patients 5–64 and >65 years of age; cases among patients <5 years of age were considerably fewer, and temporal changes by serotype were difficult to interpret (data not shown).

Over the longer term, the number of cases caused by NVT serotypes increased between 2006/2007 and 2015/2016 (IRR 2.58, 95% CI 1.52–4.56, p<0.001), particularly from 2008/2009 on (Figure 1). The increased incidence of IPD caused by NVT was not statistically significant between 2015/2016 and 2011–2014 (IRR 1.23, 95% CI 0.80–1.88, p = 0.236). Among NVTs with an observed increase, serotypes 15A, 23A, and 35F increased significantly from 2013/2014 on (Table 2; Figure 2). For 23A, this increase was particularly notable among persons >65 years of age; for serotypes 15A and 35F, the increase was among persons 5–64 and >65 years of age (data not shown).

Conclusions

Total IPD incidence increased significantly, starting in 2014/2015, reversing the declines in total IPD incidence that followed the introduction of PCVs (48). The increases were significant for PPV23-exclusive serotypes 8, 9N, and 12F and for NVT serotypes 15A, 23A, and 35F, most notably among persons 5–64 and >65 years of age.

We know of no mechanism for increased host susceptibility that could explain these rapid incidence changes. Although associations between influenza and IPD have been reported (11,12) and genetically drifted influenza strains contributed to low vaccine effectiveness in the United Kingdom during 2014/2015 (13), our primary analysis compared 2015/2016 with 2011–2014 so that any IPD increase associated with the 2014–2015 influenza season had no influence on these findings.

Mechanisms for changes in serotype prevalence include serotype replacement and capsular switching (genetic serotype switch in individual organisms) (14). In NEE, serotype replacement and declining IPD incidence were observed among persons of all age groups soon after introduction of PCV7 childhood vaccination (4), highlighting the influence of strains affecting young children in determining prevalent pneumococcal serotypes among persons in nonvaccine age groups. With ongoing >95% vaccination coverage in NEE, direct protection extends into an ever-increasing proportion of the population, up to those 10 years of age in 2016, increasing pressure on PCV strains. This pressure may be leading to accelerated serotype replacement throughout the population or to increased capsular switching, resulting in some non-PCV serotypes becoming more prevalent. Natural fluctuations in serotype prevalence may also be occurring. However, explanations for the recent IPD increase need to account for the recent and somewhat sudden rise following a long period of decline. For instance, perhaps natural expansion of non-PCV strains into the ecologic niches created has been delayed and therefore the decline observed was only temporary, or perhaps there have been recent changes in invasiveness of the non-PCV strains either naturally or associated with serotype replacement or capsular switching.

Our findings, together with data from all England (15), suggest that IPD epidemiology continues to evolve after 10 years of routine childhood vaccination. Observations from other regions that have introduced PCV are merited to determine whether the increase observed in NEE is, or becomes, a widespread phenomenon and, if so, its relationship to the timing of PCV implementation and PCV coverage. Also needed are further studies of the effects of ongoing vaccination on carriage and molecular studies to identify evidence for capsular switching and changes in invasiveness. Clarification of such factors may help guide changes to public health strategies required to tackle persistent IPD.

Dr. Houseman is a research fellow in the North East Field Epidemiology Team, Public Health England, UK. Her research interests are epidemiology and infectious diseases, including IPD.

Top

Acknowledgments

We thank the Public Health England North East Health Protection Team for their participation in IPD enhanced surveillance, the Public Health England Respiratory and Vaccine Preventable Bacteria Reference Unit for providing serotype results, all North East National Health Service microbiology laboratories for reporting cases of IPD, and teams from primary care and acute National Health Service trusts across NEE for providing enhanced surveillance data.

This work was supported by a grant from the Health Protection Agency Strategic Research and Development Fund, April 2009–March 2012; an unrestricted educational grant from Sanofi Pasteur MSD (UK12C1036), April 2012–June 2014; and an unrestricted grant from Pfizer UK Ltd (WI194024), August 2015. The funders had no role in the study design, data collection and analysis, or manuscript preparation.

Top

References

  1. Department of Health. Immunisation against infectious disease. The Green Book. 2012;25:295–313 [cited 2016 May 31]. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/147832/Green-Book-updated-140313.pdf
  2. Health & Social Care Information Centre. NHS Immunisation Statistics, England: 2014–2015 [cited 2016 Jul 19]. http://www.hscic.gov.uk/catalogue/PUB18472
  3. Public Health England. Pneumococcal polysaccharide vaccine (PPV): vaccine coverage estimates [cited 2016 Jul 19]. https://www.gov.uk/government/publications/pneumococcal-polysaccharide-vaccine-ppv-vaccine-coverage-estimates
  4. Chapman  KE, Wilson  D, Gorton  R. Serotype dynamics of invasive pneumococcal disease post-PCV7 and pre-PCV13 introduction in North East England. Epidemiol Infect. 2013;141:34452. DOIPubMedGoogle Scholar
  5. Waight  PA, Andrews  NJ, Ladhani  SN, Sheppard  CL, Slack  MP, Miller  E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015;15:53543. DOIPubMedGoogle Scholar
  6. Galanis  I, Lindstrand  A, Darenberg  J, Browall  S, Nannapaneni  P, Sjöström  K, et al. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur Respir J. 2016;47:120818. DOIPubMedGoogle Scholar
  7. Moore  MR, Link-Gelles  R, Schaffner  W, Lynfield  R, Lexau  C, Bennett  NM, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015;15:3019. DOIPubMedGoogle Scholar
  8. De Wals  P, Lefebvre  B, Markowski  F, Deceuninck  G, Defay  F, Douville-Fradet  M, et al. Impact of 2+1 pneumococcal conjugate vaccine program in the province of Quebec, Canada. Vaccine. 2014;32:15016. DOIPubMedGoogle Scholar
  9. Hughes  GJ, Wright  LB, Chapman  KE, Wilson  D, Gorton  R. Serotype-specific differences in short- and longer-term mortality following invasive pneumococcal disease. Epidemiol Infect. 2016;144:265469. https://doi.org/10.1017/S0950268816000856PubMedGoogle Scholar
  10. Kuster  SP, Tuite  AR, Kwong  JC, McGeer  A, Fisman  DN; Toronto Invasive Bacterial Diseases Network Investigators. Evaluation of coseasonality of influenza and invasive pneumococcal disease: results from prospective surveillance. PLoS Med. 2011;8:e1001042. DOIPubMedGoogle Scholar
  11. McCullers  JA, McAuley  JL, Browall  S, Iverson  AR, Boyd  KL, Henriques Normark  B. Influenza enhances susceptibility to natural acquisition of and disease due to Streptococcus pneumoniae in ferrets. J Infect Dis. 2010;202:128795. DOIPubMedGoogle Scholar
  12. Pebody  R, Warburton  F, Andrews  N, Ellis  J, von Wissmann  B, Robertson  C, et al. Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom: 2014/15 end of season results. Euro Surveill. 2015;20:30013. DOIPubMedGoogle Scholar
  13. Wyres  KL, Lambertsen  LM, Croucher  NJ, McGee  L, von Gottberg  A, Liñares  J, et al. Pneumococcal capsular switching: a historical perspective. J Infect Dis. 2013;207:43949. DOIPubMedGoogle Scholar
  14. Public Health England. Pneumococcal disease: guidance, data and analysis [cited 2016 May 31] https://www.gov.uk/government/collections/pneumococcal-disease-guidance-data-and-analysis

Top

Figures
Tables

Top

Cite This Article

DOI: 10.3201/eid2301.160897

1These authors were co-principal investigators.

Table of Contents – Volume 23, Number 1—January 2017

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Russell Gorton, Field Epidemiology Service North East, Citygate, Newcastle upon Tyne, NE1 4WH, UK

Send To

10000 character(s) remaining.

Top

Page created: December 14, 2016
Page updated: December 14, 2016
Page reviewed: December 14, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external