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Because within-host Mycobacterium tuberculosis diversity 
complicates diagnosis and treatment of tuberculosis (TB), 
we measured diversity prevalence and associated factors 
among 3,098 pulmonary TB patients in Lima, Peru. The 161 
patients with polyclonal infection were more likely than the 
115 with clonal or the 2,822 with simple infections to have 
multidrug-resistant TB.

Within-host heterogeneity of Mycobacterium tuber-
culosis infection is increasingly recognized as an 

obstacle for the accurate diagnosis (1) and effective treat-
ment (2) of tuberculosis (TB) and may complicate the con-
trol of TB in communities (3). Within-host heterogeneity 
may arise through 2 mechanisms: 1) by reinfection or si-
multaneous infection with multiple strains, which results 
in a polyclonal (mixed) infection, or 2) by accumulation 
of mutations, which results in clonal heterogeneity (4). 
The treatment challenge posed by within-host heterogene-
ity has been most clearly demonstrated for infections with 
drug-susceptible and drug-resistant variants (5). The rela-
tively high prevalence of multidrug-resistant (MDR) TB 
in Peru (≈6% among new case-patients and 21% among 
retreatment case-patients) (6) places increased stress on the 
healthcare system.

Our main objectives were to estimate the prevalence 
of within-host M. tuberculosis heterogeneity at the time 
of treatment initiation in a large cohort of pulmonary TB 
patients in Peru and to determine if factors measurable at 
the baseline visit were associated with complex infections 
(7). To determine whether our insights were sensitive to 

the method used for distinguishing between classes of het-
erogeneous infections, we used a newly described method 
(classifier of tandem repeats [ClassTR]) (8), which uses 
24-loci mycobacterial interspersed repetitive units–vari-
able number of tandem repeats (MIRU-VNTR) data to 
distinguish polyclonal and clonal infections, and we com-
pared these findings with an analysis based on the standard 
threshold-based approach (9). 

The Study
During September 2009–August 2012, we attempted to en-
roll all adults (>15 years of age) with a diagnosis of inci-
dent pulmonary TB from 106 healthcare centers in Lima, 
Peru; details of the study design have been reported pre-
viously (7). We recorded baseline data on demographics, 
medical history, and results of drug susceptibility testing 
(DST) for rifampin, isoniazid, streptomycin, ethambutol, 
and pyrazinamide. We restricted our analysis to pretreat-
ment samples and data from participants with culture-posi-
tive TB from whom sufficient mycobacterial DNA could be 
successfully obtained from the baseline sample to perform 
MIRU-VNTR typing.

All enrolled index case-patients and household con-
tacts evaluated for active TB were assessed by sputum 
smear microscopy with Ziehl-Neelsen staining and culture 
on solid Lowenstein-Jensen medium. Initial DST was per-
formed by using the proportion method on Lowenstein-
Jensen medium; second-line DST was performed by using 
the proportion method on Middlebrook 7H11 agar. We 
shipped 100 µL of the lysate from suspensions of myco-
bacterial colonies harvested from Lowenstein-Jensen slants 
to Genoscreen (Institute Pasteur, Lille, France) for 24-loci 
MIRU-VNTR typing.

The standard threshold approach for classifying com-
plex infections by using MIRU-VNTR data classifies pat-
terns with >1 band (i.e., repeat copy number) at a single 
locus as clonal infections and patterns with >1 band at 
multiple loci as polyclonal infections (9). To better distin-
guish between clonal and polyclonal infections, we used 
an alternative method called ClassTR, which leverages 
additional information about differences in loci copy num-
bers and from other strains present in the population (8). In 
simulation studies, ClassTR more accurately distinguished 
between these 2 mechanisms of within-host diversity than 
did the threshold approach (8).
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To understand whether our findings were robust to 
the classification approach used, we adopted ClassTR 
for our main analysis, but we also repeated all analyses 
with the threshold approach. We used univariable and 
multivariable multinomial logistic regression to identify 
baseline factors independently associated with having 
a clonal or a polyclonal infection, setting simple infec-
tion as the referent. Analysis was limited to complete 
cases. Co-linearity was assessed by calculating variance 
inflation factors, and p<0.05 was considered statistically 
significant. Co-linear variables were removed to pro-
duce the final multivariable model. Statistical analyses 
were conducted in R version 3.3 (http://www.R-project.
org). Research ethics committees in Peru and Boston ap-
proved the study.

We analyzed results for 3,098 participants. Most par-
ticipants were <35 years of age (64.8%) and male (61.9%); 
108 (3.5%) were known to be HIV infected. Nearly a 
fifth (18.8%) of participants reported a prior history of 
TB, and 78 (2.5%) reported having received a course of 
isoniazid chemoprophylaxis. A total of 375 (12.1%) par-
ticipants had MDR-TB, 288 (9.3%) had isoniazid or ri-
fampin monoresistance, and 357 (11.5%) had other resis-
tance patterns (predominantly streptomycin resistance). A 
total of 2,822 (91.1%) participants had simple infections 
(i.e., no evidence of within-host heterogeneity by MIRU-
VNTR), and the remaining 276 (8.9%) had evidence of 
within-host heterogeneity. Using ClassTR, we classified 
161 (5.2%) infections as polyclonal and 115 (3.7%) as 
clonal (Table 1). 

Multivariable multinomial logistic regression results 
associated polyclonal infection with multidrug resis-
tance (adjusted odds ratio 1.66, 95% CI 1.05–2.62; p = 
0.03) and other drug resistance (adjusted odds ratio 1.97, 
95% CI 1.27–3.06; p = 0.002) (Table 2). No factors were 
significantly associated with clonal infection in either  

univariable or multivariable analysis. These associations 
were largely preserved when we repeated the analysis by 
using the threshold classification approach (online Tech-
nical Appendix Tables 1, 2, https://wwwnc.cdc.gov/EID/
article/23/11/17-0077-Techapp1.pdf). 

Conclusions
Among a large cohort of pulmonary TB patients in Lima, 
Peru, we found evidence of within-host M. tuberculosis 
diversity at the time of treatment initiation in ≈9%. The 
ClassTR approach for classification based on MIRU-VN-
TR typing indicated that 5.2% of patients had polyclonal 
infections and 3.7% had clonal infections.

Polyclonal infections were positively associated with 
multidrug resistance and other drug-resistance patterns. 
When we used a 2-sided exact binomial test to test the hy-
pothesis that the risk for multidrug resistance among partici-
pants with polyclonal infection (using the observed fraction 
27/161) differed from that expected with infection by 2 ran-
domly selected strains, calculated as 1 – (1 – 348/2,937)2, 
we obtained a p value of 0.11. This p value suggests that, 
at least in this setting, the association between polyclonal 
infection and multidrug resistance cannot be attributed to 
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Table 1. Mycobacterium tuberculosis resistance patterns among 
patients with pulmonary TB, Lima, Peru, September 2009–
August 2012* 

Resistance† 
Simple, no. 

(%)  
Clonal, no. 

(%)  
Polyclonal, no. 

(%)  
Pansensitive 1,917 (67.9) 73 (63.5) 88 (54.7) 
INH or RIF 
resistance 

260 (9.2) 11 (9.6) 17 (10.6) 

Multidrug 333 (11.8) 15 (13.0) 27 (16.8) 
Other 312 (11.1) 16 (13.9) 29 (18.0) 
Total 2,822 115 161 
*Mycobacterium tuberculosis strain type determined by classifier of 
tandem repeats. INH, isoniazid; RIF, rifampin; TB, tuberculosis. 
†Drug susceptibility testing was performed for RIF, INH, streptomycin, 
ethambutol, and pyrazinamide. 

 

 
Table 2. Factors associated with clonal and polyclonal Mycobacterium tuberculosis infection among patients with pulmonary TB, Lima, 
Peru, September 2009–August 2012* 
Characteristic Clonal aOR (95% CI), n = 115 p value Polyclonal aOR (95% CI), n = 161 p value 
Age, y     
 15–24 Referent  Referent  
 25–34 1.21 (0.75–1.96) 0.44 1.40 (0.93–2.11) 0.11 
 35–44 1.16 (0.64–2.11) 0.62 1.42 (0.87–2.31) 0.16 
 >45 1.33 (0.79–2.23) 0.29 1.22 (0.77–1.95) 0.40 
Male sex 0.93 (0.63–1.38) 0.72 1.10 (0.78–1.55) 0.59 
Previous TB 0.82 (0.48–1.37) 0.45 1.27 (0.86–1.86) 0.23 
Previous INH receipt 1.51 (0.54–4.27) 0.44 1.84 (0.82–4.15) 0.14 
HIV infection 0.99 (0.35–2.78) 0.98 1.12 (0.50–2.49) 0.79 
≥1 chronic disease 0.90 (0.55–1.46) 0.66 0.97 (0.64–1.46) 0.88 
Hospitalized 1.01 (0.58–1.75) 0.97 0.98 (0.61–1.57) 0.93 
Resistance pattern     
 Pansensitive Referent  Referent  
 INH or RIF resistance 1.11 (0.58–2.13) 0.76 1.38 (0.81–2.37) 0.24 
 Multidrug resistance 1.24 (0.70–2.22) 0.46 1.66 (1.05–2.62) 0.03 
 Other  1.34 (0.77–2.33) 0.31 1.97 (1.27–3.06) 0.002 
*Results of multivariable regression analysis using classifier of tandem repeats method. aOR, adjusted odds ratio; INH, isoniazid; RIF, rifampin; TB, 
tuberculosis. 
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more than the increased risk that would accrue from mul-
tiple exposures.

A review of the literature on factors associated with 
within-host diversity revealed substantial variability be-
tween settings. Studies from Botswana and Taiwan found 
a higher prevalence of polyclonal infection among patients 
with MDR-TB (10,11); however, studies from Vietnam and 
KwaZulu-Natal (South Africa) did not find this association 
(12,13). It is possible that this association may be modi-
fied in the presence of HIV coinfection or that the ability 
to identify such an association is easier in areas where the 
prevalence of multidrug resistance is higher.

The main strengths of this study relate to the large pro-
spective cohort of pulmonary TB patients evaluated in a 
study area with a population of 3.3 million persons. How-
ever, 30% of enrolled participants did not have culture-con-
firmed TB, precluding MIRU-VNTR analysis on all partici-
pants. Use of the MIRU-VNTR assay on cultured specimens 
to detect within-host heterogeneity was motivated by practi-
cal considerations. Because MIRU-VNTR typing is unable 
to identify all minority variants, and some diversity may be 
lost during culture (14), our categorization of infections into 
simple, clonal, and polyclonal may be subject to misclassifi-
cation, which would be differential (i.e., complex infections 
are more likely to be misclassified as simple than the reverse) 
and could lead to bias. The use of a high number of MIRU-
VNTR loci also reduces the likelihood of homoplasy. Fur-
thermore, although the biological clock of the MIRU-VNTR 
marker seems to be relatively stable (recently estimated 
MIRU-VNTR mutation rate for TB is 2.70 × 10–3 mutations/
locus/year [15]), changes accruing in the marker could lead 
to misclassification of clonal strains as polyclonal strains; we 
used the ClassTR method in an attempt to minimize such 
misclassification. 

We found complex infections attributable to multiple 
infection events to be associated with increased risk for 
MDR TB. This finding further emphasizes the value of ef-
forts to mitigate the transmission of MDR TB. 
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