Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 3—March 2017

New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo

Sven Malm, Laure S. Ghoma Linguissi, Emmanuel M. Tekwu, Jeannhey C. Vouvoungui, Thomas A. Kohl, Patrick Beckert, Anissa Sidibe, Sabine Rüsch-Gerdes, Igor K. Madzou-Laboum, Sylvie Kwedi, Véronique Penlap Beng, Matthias Frank, Francine Ntoumi, and Stefan NiemannComments to Author 
Author affiliations: Leibniz Center for Medicine and Biosciences, Borstel, Germany (S. Malm, T.A. Kohl, P. Beckert, S. Rüsch-Gerdes, S. Niemann); Fondation Congolaise pour la Recherche Médicale, Brazzaville, Congo (L.S. Ghoma Linguissi, J.C. Vouvoungui, A. Sidibe, S. Kwedi, F. Ntoumi); University Marien Ngouabi, Brazzaville (L.S. Ghoma Linguissi, J.C. Vouvoungui, A. Sidibe, F. Ntoumi); University of Yaoundé I, Yaoundé, Cameroon (E.M. Tekwu, V. Penlap Beng); Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany (E.M. Tekwu, M. Frank, F. Ntoumi); Centre Antituberculeux de Brazzaville, Brazzaville (I.K. Madzou-Laboum); German Center for Infection Research, Tübingen Site, Tübingen (M. Frank); German Center for Infection Research, Borstel Site, Borstel (S. Niemann)

Main Article

Figure 1

Maximum-likelihood tree of Mycobacterium tuberculosis complex isolates from Congo (black branch tips) and 65 reference strains (red branch tips). The tree was calculated by using the general time reversible substitution model with gamma distribution based on single-nucleotide polymorphisms identified by whole-genome sequencing. Models were tested and the tree generated by using MetaPiga software version 3.1 (18) and the maximum-likelihood ratio test. Midpoint rooting was performed. Distinct colo

Figure 1. Maximum-likelihood tree of Mycobacterium tuberculosis complex isolates from Congo (black branch tips) and 65 reference strains (red branch tips). The tree was calculated by using the general time reversible substitution model with gamma distribution based on single-nucleotide polymorphisms identified by whole-genome sequencing. Models were tested and the tree generated by using MetaPiga software version 3.1 (18) and the maximum-likelihood ratio test. Midpoint rooting was performed. Distinct colors were chosen for the lineages identified; leaves with white background represent strains that initially were not assigned to particular lineages because of ambiguous typing patterns from mycobacterial interspersed repetitive unit, restriction fragment length polymorphism, or spoligo analysis (data not shown). The numerical code assigned to the respective lineages at the outer rim of the circular tree shows the Coll-nomenclature inferred from the whole-genome sequencing data. EAI, East African Indian; LAM, Latin American Mediterranean; TUR, Turkish. Scale bar indicates nucleotide substitutions per site.

Main Article

  1. World Health Organization. Global tuberculosis report 2015. 20th ed. Geneva: The Organization; 2015.
  2. Comas  I, Gagneux  S. The past and future of tuberculosis research. PLoS Pathog. 2009;5:e1000600. DOIPubMedGoogle Scholar
  3. van Soolingen  D, Hermans  PW, de Haas  PE, Soll  DR, van Embden  JD. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol. 1991;29:257886.PubMedGoogle Scholar
  4. Allix-Béguec  C, Fauville-Dufaux  M, Stoffels  K, Ommeslag  D, Walravens  K, Saegerman  C, et al. Importance of identifying Mycobacterium bovis as a causative agent of human tuberculosis. Eur Respir J. 2010;35:6924. DOIPubMedGoogle Scholar
  5. Merker  M, Blin  C, Mona  S, Duforet-Frebourg  N, Lecher  S, Willery  E, et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet. 2015;47:2429. DOIPubMedGoogle Scholar
  6. Linguissi  LS, Mayengue  PI, Sidibé  A, Vouvoungui  JC, Missontsa  M, Madzou-Laboum  IK, et al. Prevalence of national treatment algorithm defined smear positive pulmonary tuberculosis in HIV positive patients in Brazzaville, Republic of Congo. BMC Res Notes. 2014;7:578. DOIPubMedGoogle Scholar
  7. Deutsches Institut für Normung. Medical microbiology. Diagnosis of tuberculosis. Part 3: detection of mycobacteria by culture methods. DIN 58943–3. Berlin; Beuth Verlag; 2011.
  8. Kent  PT, Kubica  GP. Public health mycobacteriology: a guide for the level III laboratory. Atlanta: Centers for Disease Control; 1985.
  9. Kamerbeek  J, Schouls  L, Kolk  A, van Agterveld  M, van Soolingen  D, Kuijper  S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35:90714.PubMedGoogle Scholar
  10. Gori  A, Bandera  A, Marchetti  G, Degli Esposti  A, Catozzi  L, Nardi  GP, et al. Spoligotyping and Mycobacterium tuberculosis. Emerg Infect Dis. 2005;11:12428. DOIPubMedGoogle Scholar
  11. Allix-Béguec  C, Harmsen  D, Weniger  T, Supply  P, Niemann  S. Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol. 2008;46:26929. DOIPubMedGoogle Scholar
  12. Weniger  T, Krawczyk  J, Supply  P, Niemann  S, Harmsen  D. MIRU-VNTRplus: a Web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res. 2010;38(Web Server issue):W326–331.
  13. Blom  J, Jakobi  T, Doppmeier  D, Jaenicke  S, Kalinowski  J, Stoye  J, et al. Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming. Bioinformatics. 2011;27:13518. DOIPubMedGoogle Scholar
  14. Roetzer  A, Diel  R, Kohl  TA, Rückert  C, Nübel  U, Blom  J, et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med. 2013;10:e1001387. DOIPubMedGoogle Scholar
  15. Comas  I, Chakravartti  J, Small  PM, Galagan  J, Niemann  S, Kremer  K, et al. Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet. 2010;42:498503. DOIPubMedGoogle Scholar
  16. Walker  TM, Ip  CL, Harrell  RH, Evans  JT, Kapatai  G, Dedicoat  MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:13746. DOIPubMedGoogle Scholar
  17. Coll  F, McNerney  R, Guerra-Assunção  JA, Glynn  JR, Perdigão  J, Viveiros  M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4812. DOIPubMedGoogle Scholar
  18. Helaers  R, Milinkovitch  MC. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics. 2010;11:379. DOIPubMedGoogle Scholar
  19. Posada  D, Crandall  KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:8178. DOIPubMedGoogle Scholar
  20. Zhang  H, Gao  S, Lercher  MJ, Hu  S, Chen  W-H. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees. Nucleic Acids Res. 2012;40(W1):W569-72. DOIPubMedGoogle Scholar
  21. Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:196973. DOIPubMedGoogle Scholar
  22. Homolka  S, Projahn  M, Feuerriegel  S, Ubben  T, Diel  R, Nübel  U, et al. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS One. 2012;7:e39855. DOIPubMedGoogle Scholar
  23. Tessema  B, Beer  J, Merker  M, Emmrich  F, Sack  U, Rodloff  AC, et al. Molecular epidemiology and transmission dynamics of Mycobacterium tuberculosis in Northwest Ethiopia: new phylogenetic lineages found in Northwest Ethiopia. BMC Infect Dis. 2013;13:131. DOIPubMedGoogle Scholar
  24. Olaru  ID, Rachow  A, Lange  C, Ntinginya  NE, Reither  K, Hoelscher  M, et al. Ascertaining in vivo virulence of Mycobacterium tuberculosis lineages in patients in Mbeya, Tanzania. Int J Tuberc Lung Dis. 2015;19:703. DOIPubMedGoogle Scholar
  25. Niobe-Eyangoh  SN, Kuaban  C, Sorlin  P, Cunin  P, Thonnon  J, Sola  C, et al. Genetic biodiversity of Mycobacterium tuberculosis complex strains from patients with pulmonary tuberculosis in Cameroon. J Clin Microbiol. 2003;41:254753. DOIPubMedGoogle Scholar
  26. Koro Koro  F, Kamdem Simo  Y, Piam  FF, Noeske  J, Gutierrez  C, Kuaban  C, et al. Population dynamics of tuberculous Bacilli in Cameroon as assessed by spoligotyping. J Clin Microbiol. 2013;51:299302. DOIPubMedGoogle Scholar
  27. Sidze  LK, Tekwu  EM, Kuaban  C, Assam  J-PA, Tedom  J-C, Niemann  S, et al. Estimates of genetic variability of Mycobacterium tuberculosis complex and its association with drug resistance in Cameroon. Adv Infect Dis. 2013;3:55. DOIGoogle Scholar
  28. Mbugi  EV, Katale  BZ, Streicher  EM, Keyyu  JD, Kendall  SL, Dockrell  HM, et al. Mapping of Mycobacterium tuberculosis complex genetic diversity profiles in Tanzania and other African countries. PLoS One. 2016;11:e0154571. DOIPubMedGoogle Scholar
  29. Hermans  PW, Messadi  F, Guebrexabher  H, van Soolingen  D, de Haas  PE, Heersma  H, et al. Analysis of the population structure of Mycobacterium tuberculosis in Ethiopia, Tunisia, and The Netherlands: usefulness of DNA typing for global tuberculosis epidemiology. J Infect Dis. 1995;171:150413. DOIPubMedGoogle Scholar
  30. Gagneux  S, Long  CD, Small  PM, Van  T, Schoolnik  GK, Bohannan  BJM. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science. 2006;312:19446. DOIPubMedGoogle Scholar
  31. Victor  TC, de Haas  PEW, Jordaan  AM, van der Spuy  GD, Richardson  M, van Soolingen  D, et al. Molecular characteristics and global spread of Mycobacterium tuberculosis with a western cape F11 genotype. J Clin Microbiol. 2004;42:76972. DOIPubMedGoogle Scholar
  32. van Soolingen  D, Qian  L, de Haas  PE, Douglas  JT, Traore  H, Portaels  F, et al. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol. 1995;33:32348.PubMedGoogle Scholar
  33. Park  YK, Bai  GH, Kim  SJ. Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from countries in the western pacific region. J Clin Microbiol. 2000;38:1917.PubMedGoogle Scholar
  34. Asiimwe  BB, Koivula  T, Källenius  G, Huard  RC, Ghebremichael  S, Asiimwe  J, et al. Mycobacterium tuberculosis Uganda genotype is the predominant cause of TB in Kampala, Uganda. Int J Tuberc Lung Dis. 2008;12:38691.PubMedGoogle Scholar
  35. Feuerriegel  S, Oberhauser  B, George  AG, Dafae  F, Richter  E, Rüsch-Gerdes  S, et al. Sequence analysis for detection of first-line drug resistance in Mycobacterium tuberculosis strains from a high-incidence setting. BMC Microbiol. 2012;12:90. DOIPubMedGoogle Scholar
  36. Aubry  A, Sougakoff  W, Bodzongo  P, Delcroix  G, Armand  S, Millot  G, et al. First evaluation of drug-resistant Mycobacterium tuberculosis clinical isolates from Congo revealed misdetection of fluoroquinolone resistance by line probe assay due to a double substitution T80A-A90G in GyrA. PLoS One. 2014;9:e95083. DOIPubMedGoogle Scholar
  37. Sidze  LK, Mouafo Tekwu  E, Kuaban  C, Assam Assam  J-P, Tedom  J-C, Eyangoh  S, et al. Strong decrease in streptomycin-resistance and absence of XDR 12 years after the Reorganization of the National Tuberculosis Control Program in the Central Region of Cameroon. PLoS One. 2014;9:e98374. DOIPubMedGoogle Scholar
  38. Tekwu  EM, Sidze  LK, Assam  J-P, Tedom  J-C, Tchatchouang  S, Makafe  GG, et al. Sequence analysis for detection of drug resistance in Mycobacterium tuberculosis complex isolates from the Central Region of Cameroon. BMC Microbiol. 2014;14:113. DOIPubMedGoogle Scholar

Main Article

Page created: February 17, 2017
Page updated: February 17, 2017
Page reviewed: February 17, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.