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 Increased Threat from B. pseudomallei, Australia

Neurologic melioidosis is a serious, potentially fatal form of 
Burkholderia pseudomallei infection. Recently, we reported 
that a subset of clinical isolates of B. pseudomallei from 
Australia have heightened virulence and potential for dis-
semination to the central nervous system. In this study, we 
demonstrate that this subset has a B. mallei–like sequence 
variation of the actin-based motility gene, bimA. Compared 
with B. pseudomallei isolates having typical bimA alleles, 
isolates that contain the B. mallei–like variation demonstrate 
increased persistence in phagocytic cells and increased 
virulence with rapid systemic dissemination and replication 
within multiple tissues, including the brain and spinal cord, 
in an experimental model. These findings highlight the impli-
cations of bimA variation on disease progression of B. pseu-
domallei infection and have considerable clinical and public 
health implications with respect to the degree of neurotropic 
threat posed to human health.

Burkholderia mallei, the etiologic agent of glanders, is 
thought to have evolved from a single strain of B. pseu-

domallei, becoming highly specialized for intracellular per-
sistence (1). B. mallei and B. pseudomallei share sequence 
similarity and are highly pathogenic through the respiratory 
route, often initiating rapid disease progression resulting in 
high mortality (2). Unlike B. pseudomallei, B. mallei has a 
narrower host range and is less capable of extended persis-
tence in the environment. 

Knowledge of the virulence factors responsible for in-
ducing the diverse spectrum of clinical manifestations of 
B. pseudomallei infection remains limited (3). Similar to 
bacteria of other genera, such as Listeria, Rickettsia, My-
cobacterium, and Shigella, intercellular and intracellular 
movement of Burkholderia are facilitated by actin po-
lymerization at 1 pole of the bacterium (4). The putative 
autotransporter protein Burkholderia intracellular motility 
A (BimA) has been shown to mediate actin-based motil-
ity in B. pseudomallei and B. mallei, promoting bacterial 
dissemination while shielding the pathogen from immune 
surveillance and autophagy (5). Differences in the structure 
of the bimA gene in B. mallei and B. pseudomallei (6–8) 
suggest that actin assembly might occur through distinct 
mechanisms in these 2 Burkholderia species. B. mallei–like 
bimA variants (bimBm) have been identified in a subset of B. 
pseudomallei isolates from Australia and 2 B. pseudomal-
lei isolates from India (9,10). This allele has not yet been 
identified in isolates from Southeast Asia.

Neurologic melioidosis is a serious, potentially fatal 
form of B. pseudomallei infection. Recently, we report-
ed that although B. pseudomallei isolates from patients 
with neurologic melioidosis do not demonstrate selective 
neurotropism in an experimental model, a distinct subset 
of B. pseudomallei isolates appeared equipped for rapid 
dissemination to multiple tissues, including the central 
nervous system (CNS), after infection (11). Correlation 

of virulence genes of B. pseudomallei with clinical pre-
sentations of melioidosis identified the bimBm allele as a 
risk factor for neurologic melioidosis (12). Given the im-
portance of BimA in intercellular and intracellular spread 
of Burkholderia spp. and the recognition of bimBm vari-
ants of B. pseudomallei in northern Australia, we hypoth-
esized that bimBm variants of B. pseudomallei would have 
an increased advantage for establishment of infection 
and dissemination compared with typical bimBp strains. 
Therefore, we used a well-characterized animal model of 
melioidosis to compare virulence and disease progression 
after infection with clinical isolates of B. pseudomallei 
collected in the Northern Territory of Australia during 
October 1989–October 2012 and identified as having ei-
ther the bimBm or bimBp allele (13).

Methods

B. pseudomallei Isolates
B. pseudomallei strains were isolated from patients with 
melioidosis. Clinical details and the sequence type deter-
mined from multilocus sequence typing of the B. pseudo-
mallei strains investigated are noted (Table). Additional 
details are described elsewhere (11,12,14,15). These iso-
lates were chosen to represent B. pseudomallei strains pre-
viously identified as having bimBm (n = 7) and bimBp (n = 8) 
alleles within the bimA gene (10,12).

Animal Infection
We used 8- to 12-week-old C57BL/6 and BALB/c mice 
purchased from the Small Animal Breeding Facility at 
James Cook University. Experiments were approved by 
the Institutional Animal Ethics committee (A1500). To 
mimic natural routes of infection, intranasal or subcuta-
neous routes were used for inoculation by using methods 
described previously (16). B. pseudomallei isolates were 
cultured to logarithmic phase and prepared for inoculations 
as previously described (11).

Virulence Determination
Virulence of bimBm (n = 7) and bimBp (n = 6) isolates were 
compared in mice as described previously (11). The 50% 
infectious dose (ID50) was determined by using a modified 
version of the Reed and Meunch method (17). Virulence, 
as defined by the ID50 values for B. pseudomallei strains, 
were compared in BALB/c and C57BL/6 mice after intra-
nasal and subcutaneous infection. Data for bimBm and bimBp 
strains are expressed as mean log10 ID50 +SD

Bacterial Dissemination and Disease Progression
We selected bimBm (MSHR543) and bimBp (MSHR305) 
strains of comparable virulence (determined by intra-
nasal ID50 values as 2.6 × 102 CFU and 2.9 × 102 CFU,  
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respectively) for comparison of bacterial dissemination 
after intranasal infection of C57BL/6 mice. C57BL/6 
mice provide a more accurate model for neurologic meli-
oidosis because this form of the disease tends to occur 
in otherwise healthy persons without known risk factors 
(13). MSHR543 (bimBm) was isolated from a localized 
skin infection in a healthy 22-year-old with a cut on her 
hand that was exposed to muddy water. Blood cultures 
were negative, and she remained systemically well with 
no evidence of dissemination of B. pseudomallei. The 
bimBp (MSHR305) strain was isolated from a patient with 
a fatal case of neurologic melioidosis. The 64-year-old 
patient had a history of excessive alcohol consumption 
and had had onset of flaccid paralysis after a period of in-
fluenza-like illness (14). An equivalent dose of MSHR543 
(1.4 × 104 CFU) or MSHR305 (1.1 × 104 CFU) was used 
to inoculate mice. Survival rates and signs of disease were 
monitored daily for a period of 21 days (n = 10 mice per 
isolate). Mice that became moribund during the experi-
mental period were euthanized, and bacterial loads were 
determined in organs and pathology of CNS investigated. 
Parallel groups of mice were inoculated with MSHR543 
(bimBm) (n = 15) and MSHR305 (bimBp) (n = 15) for as-
sessment of bacterial loads within blood, liver, spleen, 
lung, cervical lymph node , brain, and nasal-associated 
lymphoid tissue (NALT) at 2 hours, 1 day, and 3 days 
postinfection (n = 5 mice per time point) by using meth-
ods described previously (11). The detection limit of bac-
teria in blood and organs was 2 CFU. Data are expressed 
as the mean log10 CFU +SD.

Bacterial Growth Rate
The growth of B. pseudomallei isolates in trypticase soy 
broth (TSB) was compared. Overnight broth cultures of B. 
pseudomallei isolates were diluted 1:10 in fresh TSB and 

incubated in triplicate at 37°C with shaking at 120 rpm. 
Absorbance (600 nm) was measured hourly for 10 hours 
with a microplate reader (Fluostar Omega; BMG Labtech, 
Mornington, VIC, Australia) and the exponential growth 
rate for each isolate determined. Data are presented as the 
mean gradient (μhr–1) +SD for bimBm and bimBp strains.

Internalization and Persistence of Bacteria  
in Phagocytic Cells
We determined internalization and intracellular persis-
tence of B. pseudomallei isolates (n = 7 bimBm; n = 8 bimBp) 
in mononuclear phagocytes after co-culture with murine 
leukocytes. Leukocytes were isolated from spleen and 
peripheral lymph nodes (cervical, mediastinal, axillary, 
inguinal, and popliteal) of uninfected female C57BL/6 
mice (18). B. pseudomallei isolates were grown to loga-
rithmic phase, washed then added to leukocyte cultures at 
a multiplicity of infection of 1 (mononuclear cell): 5 (bac-
teria) (19). After 2 hours of co-culture, kanamycin (250 
μg/mL) was added to wells to limit extracellular bacte-
rial growth (18). Internalization (2 h) and persistence (8 
and 24 h) of B. pseudomallei isolates in leukocytes was 
determined by flow cytometry. Uninfected and B. pseu-
domallei–infected leukocytes were fluorescently stained 
with a combination of anti-mouse fluorescein isothiocya-
nate–conjugated CD45 and F4/80 (BD Biosciences, North 
Ryde, NSW, Australia) and peridinin chlorophyll-cyanine 
5.5 (PerCP-Cy5.5)–conjugated CD11c (eBioscience, San 
Diego, CA, USA) by using methods described previous-
ly (18). After fixation and permeabilization, leukocytes 
were stained with polyclonal rabbit anti–B. pseudomallei 
outer membrane protein antibody (BpOMP). A second-
ary biotinylated goat anti-rabbit IgG (Vector Labs, Bur-
lingame, CA, USA) monoclonal antibody and streptavi-
din–phycoerythrin conjugate (eBioscience) was used for 
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Table. Clinical and patient characteristics and sequence type diversity of bimBm and bimBp Burkholderia pseudomallei isolates, 
Australia 
Isolate no. Age, y/sex Risk factors Clinical presentation Outcome MLST genotype 
bimBm 
 MSHR62 23/M None Brainstem encephalitis Survived 148 
 MSHR435 37/M None Brainstem encephalitis Survived 126 
 MSHR543 22/F None Skin ulcer Survived 294 
 MSHR668 53/M None Diffuse encephalitis Survived 129 
 MSHR1153 59/M DBT Brainstem encephalitis Died 117 
 MSHR2138 49/F DBT Bacteremia Survived 456 
 NCTC13178 6/M None Brainstem encephalitis Died 286 
bimBp 
 MSHR305 64/M ALC Encephalitis, myelitis Died 36 
 MSHR346 49/M ALC, COPD Pneumonia Survived 243 
 MSHR465 67/M DBT, COPD Pneumonia, septic shock Died 132 
 MSHR1655 61/F COPD Pneumonia Survived 131 
 MSHR3709 14/M None Brainstem encephalitis Survived 132 
 MSHR974* 16/F None Skin ulcer Survived 554 
 MSHR4237* 45/F None Pneumonia Survived 868 
 NCTC13179 54/M DBT Skin ulcer Survived 613 
*Additional isolates included for internalization and persistence assays. ALC, hazardous alcohol use; COPD, chronic obstructive pulmonary disease; DBT, 
diabetes; MLST, multilocus sequence typing. 
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detection of the primary antibody. Acquisition (2 × 105 
leukocytes) was performed by using a FACSCalibur with 
Cell Quest software (BD Biosciences) and FlowJo soft-
ware (Tree Star, Inc., San Carlos, CA, USA) was used for 
postacquisition analysis. The fluorescence of extracellu-
lar bacteria was quenched with Trypan blue (0.2%). Data 
are expressed as the percentage or total number of leuko-
cytes (CD45+), macrophages (F4/80+), or dendritic cells 
(CD11c+) positive for intracellular BpOMP staining. Two 
independent experiments were conducted, and the mean 
+SD of data from both experiments is shown. Microbio-
logic culture was used to confirm intracellular B. pseudo-
mallei numbers estimated by BpOMP staining (20).

Statistical Analysis
We performed statistical analysis by using Graphpad 
Prism Version 6 (Graphpad Software, La Jolla, CA, 
USA) and used Kaplan–Meier survival curves to com-
pare susceptibility to infection with B. pseudomallei 
isolates. Virulence parameters (ID50 values, time for 

development of neurologic symptoms, and intracellular 
bacterial loads within leukocytes) for bimBm and bimBp 
strains were compared by using the Mann-Whitney U 
test. Bacterial load kinetics in organs after infection with 
MSHR543 (bimBm) and MSHR305 (bimBp) were tested 
for significance using 2-way analysis of variance with 
Sidak’s post hoc analysis. We considered comparisons 
significant at p<0.05.

Results

High Virulence of BimBm Variants in Murine Models  
of Melioidosis
We compared virulence, as defined by ID50, for bimBm and 
bimBp strains in B. pseudomallei–susceptible (BALB/c) and 
B. pseudomallei–partially resistant (C57BL/6) mice after 
intranasal and subcutaneous infection (16,21). B. pseudo-
mallei bimBm strains were significantly more virulent for 
BALB/c and C57BL/6 (Figure 1, panels A and B) mice 
than bimBp strains, regardless of route of infection. These 
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Figure 1. Virulence of bimBm and bimBp Burkholderia pseudomallei isolates. Day 21 50% infectious dose values after intranasal and 
subcutaneous infection of BALB/c (A) and C57BL/6 (B) mice with bimBm (n = 7) and bimBp (n = 6) B. pseudomallei isolates. Groups of 5 
mice were inoculated via intranasal and subcutaneous routes at 10-fold increasing doses of B. pseudomallei, ranging from 100 CFU to 107 
CFU. Virulence of bimBm isolates was significantly greater for both mouse strains, regardless of the infection route. Data are expressed 
as mean log10 CFU +SD. C57BL/6 mice (n = 10) were infected with bimBm (n = 7) and bimBp (n = 6) B. pseudomallei isolates at equivalent 
doses (104 CFU) and monitored for 21 days postinfection. The percentage of mice for a given bacterial strain for which evidence indicated 
establishment of B. pseudomallei infection (culture-positive growth from tissues) (C) and signs of neurologic involvement (e.g., head tilt, 
spinning behavior, and hind leg paresis) (D) was increased for animals exposed to bimBm compared with bimBp isolates. *p<0.05; **p<0.01.
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findings are consistent with the BALB/c–C57BL/6 model 
of contrasting resistance to B. pseudomallei (21).

When equivalent inoculating doses of B. pseudomallei 
strains were compared (104 CFU), bimBm strains were more 
likely to establish persistent infection with bacteria recov-
erable from multiple organs at 21 days postinfection after 
intranasal infection of C57BL/6 mice (p = 0.077) (Figure 
1, panel C). Additionally, neurologic involvement occurred 
with more frequency in animals infected through the in-
tranasal route with bimBm compared with those infected 
with bimBp strains when an equivalent inoculating dose (104 
CFU; n = 10 mice/B. pseudomallei strain) was used (p = 
0.046) (Figure 1, panel D). Most B. pseudomallei strains 
tested were capable of CNS infection; however, neurologic 
involvement tended to occur at comparatively lower inocu-
lating doses for bimBm than bimBp strains. The mean number 
of bacteria required to infect C57BL/6 mice through the re-
spiratory tract and result in the development of neurologic 
signs in >20% of mice was 9 × 103 CFU (range 5.3 × 101 
to 2 × 104 CFU) for bimBm and 3.7 × 105 CFU (range 2.6 × 
104 to 6.6 × 105) for bimBp (p = 0.048). Despite infection 
of C57BL/6 mice with doses as high as 108 CFU, neuro-
logic symptoms were never observed after infection with 
2 strains (MSHR3709 and MSHR1655), both of which are 
type bimBp.

The mean number of bacteria required to infect sus-
ceptible BALB/c mice via the respiratory route and mani-
fest neurologic signs in >20% of mice was 8.6 × 103 CFU 
(range 4 × 101 to 3 × 104 CFU) for bimBm and 1.5 × 105 CFU 
(range 2.6 × 104 to 4.2 × 105 CFU) for bimBp (p = 0.03). For 
C57BL/6 mice, the mean number of days postinfection for 
onset of neurologic symptoms was 9 (range 5–16) days; for 
BALB/c mice, it was 11 (range 4–18) days. These findings 
indicate that bimBm variants are significantly more virulent 
than bimBp strains in murine models of melioidosis and sug-
gest that fewer inoculating bacteria are required to establish 
CNS infection.

Differing Disease Progression for bimBm and bimBp  
Strains after Intranasal Infection
We selected a bimBm (MSHR543) and bimBp (MSHR305) 
strain of comparable virulence to compare organ tropism 
after intranasal infection (intranasal ID50 values of 2.6 × 
102 and 2.9 × 102 CFU, respectively). Twenty-one day 
mortality rates were comparable after intranasal infection 
with either MSHR543 (bimBm) or MSHR305 (40% and 
50%, respectively). However, of the animals monitored for 
survival, 2 of the 5 mice that succumbed to infection with 
MSHR305 (bimBp) had neurologic symptoms (1 with head 
tilt on day 7, another with hind limb paresis on day 14). In 
contrast, all of the 4 mice that succumbed to infection with 
MSHR543 (bimBm) had symptoms of neurologic melioido-
sis (3 with head tilt on day 5 and day 7, the other with hind 

leg paresis on day 7). Moribund mice were euthanized and 
tissues processed for bacterial load determination. Bacte-
rial loads were high in brains of moribund mice (Figure 2). 
B. pseudomallei was typically recovered from all tissues in-
vestigated, although levels tended to be low or undetectable 
in the blood of moribund mice that had signs of neurologic 
infection in the first week postinfection. Compared with 
moribund animals infected with MSHR543 (bimBm), bacte-
rial loads were significantly higher in NALT of moribund 
mice infected with MSHR305 (bimBp, p = 0.025), with a 
similar trend observed in lung. Abscessation was observed 
in the nasal epithelium, with extensive suppurative inflam-
mation in the olfactory submucosa extending to the olfac-
tory bulb and moderate infiltration in the trigeminal nerve 
branches (Figure 3, panels A and B) in mice that had signs 
of neurologic involvement at day 5 postinfection with 
MSHR543 (bimBm). Leptomeningitis and encephalomyeli-
tis were cardinal features in these animals (Figure 3, panels 
C and D). We also observed cranial microabscesses were 
in animals that succumbed to infection, although the area 
affected varied and included the cerebellum, brainstem, and 
cerebral cortex (Figure 3, panel E).

Systemic dissemination occurred rapidly for MSHR543 
(bimBm) and MSHR305 (bimBp); bacteria were recovered 
from multiple sites by day 1 postinfection (Figure 4). At 2 
hours postinfection, NALT was the only tissue that bacte-
ria were cultured from, with levels comparable for mice in-
fected with MSHR543 (bimBm) and MSHR305 (bimBp) (log10 
CFU of 0.9 +1.1 and 0.3 +1.1, respectively). Compared with 
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Figure 2. Brain bacterial loads in mice that had signs of neurologic 
involvement and succumbed to infection with MSHR543 (bimBm) 
and MSHR305 (bimBp) Burkholderia pseudomallei isolates. Bacterial 
loads in brains of C57BL/6 mice (MSHR543, n = 4; MSHR305, n = 
5) that had become moribund and required euthanasia within the 
21-day experimental period after intranasal infection with MSHR543 
(1.4 × 104 CFU; white bars) and MSHR305 (1.1 × 104 CFU; black 
bars). N indicates mice that displayed symptoms of neurologic 
involvement. Data are expressed as log10 CFU. Mice exposed 
to MSHR543 (bimBm) had signs of neurologic involvement and 
became moribund within 7 days of exposure.
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MSHR305 (bimBp), replication of MSHR543 (bimBm) was 
significantly higher in cervical lymph nodes and spleen (Fig-
ure 4). Bacterial loads were low in brains of mice infected 
with MSHR543 (bimBm) and MSHR305 (bimBp) within 3 days 
of infection despite signs of neurologic involvement by day 
5 postinfection in 4 mice infected with MSHR543 (bimBm), 
corresponding to bacterial loads in the brain in excess of 102 
CFU (Figure 2). In comparison, only 1 animal infected with 
MSHR305 (bimBp) had symptoms of neurologic melioidosis 
and required euthanasia within 7 days.

Five mice (50%) survived to 21 days after intranasal 
infection with MSHR305 (bimBp), of which 4 had evidence 

of persistent B. pseudomallei infection, with bacteria re-
covered from the brain of 1 mouse (Figure 4, panel C). 
Six mice (60%) survived after intranasal infection with 
MSHR543 (bimBm), and all had evidence of persistent in-
fection, with bacteria recovered from the brains of 5 mice 
(Figure 4, panel C).

These findings demonstrate that despite equivalent 
inoculating doses and similar 21-day mortality rates, the 
pattern and kinetics of dissemination differ for MSHR543 
(bimBm) and MSHR305 (bimBp) after intranasal infection, 
with neurologic involvement occurring with more frequen-
cy after infection with MSHR543 (bimBm).
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Figure 3. Central nervous system pathology in mice that had signs of neurologic involvement and succumbed to infection with bimBm and 
bimBp Burkholderia pseudomallei isolates. Evidence of central nervous system pathology was demonstrated in these mice. Inflammatory 
infiltrates were prominent in trigeminal nerve branches and ganglion (original magnification ×400) (A) and in the olfactory bulb 
(original magnification ×200) (B). Cranial meningitis (C) and spinal (D) meningitis were observed, often with involvement of underlying 
parenchyma (original magnification ×400). Microabscesses were frequently observed in cerebral cortex (original magnification ×100)  
(E), brainstem (not shown) and cerebellum (not shown) of mice that had neurologic symptoms and succumbed to infection.

Figure 4. Comparison of early bacterial dissemination and persistence after intranasal infection of C57BL/6 mice with MSHR543 
(bimBm) and MSHR305 (bimBp) Burkholderia pseudomallei isolates. A, B) Bacterial load at day 1 (A) and day 3 (B) postinfection in nasal-
associated lymphoid tissue, brain, cervical lymph nodes, lung, spleen, liver, and blood after intranasal infection of C57BL/6 mice (n = 5/
time point) with MSHR543 (1.4 × 104 CFU; white bars) and MSHR305 (1.1 × 104 CFU; black bars). C) Bacterial organ loads in mice that 
survived the 21-day experimental period (MSHR543, n = 6; MSHR305, n = 5). Data are expressed as mean log10 CFU +SD (upper bars 
only). cLN, cervical lymph nodes; NALT, nasal-associated lymphoid tissue; ND, not detected. *p<0.05; **p<0.01.
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Increased Persistence of bimBm Strains in Mononuclear 
Phagocytic Cells
To investigate whether differences observe in systemic dis-
semination in vivo might be attributable to inherent differenc-
es in multiplication of bimBm and bimBp strains, we compared 
the in vitro growth rate of isolates in broth culture. No signifi-
cant differences were observed for the exponential growth of 
bimBm and bimBp variants in TSB (slope, μhr-1, 0.105 +0.02 and 
0.092 +0.02, respectively). Having demonstrated that bimBm 
and bimBp strains multiply at the same rate in cell-free me-
dia, we next investigated whether intracellular growth rates 
were comparable for the 2 groups of isolates. Because mac-
rophages and dendritic cells play a pivotal role in protection 
against B. pseudomallei infection (3), we compared the up-
take and persistence of bimBm (n = 7) and bimBp (n = 8) isolates 
in ex vivo cultures of murine spleen and lymph node–derived 
macrophages and DC. Absolute numbers of leukocytes were 
comparable for bimBm- and bimBp-infected cultures at 2, 8, and 
24 hours postinfection (Figure 5, panel A). The percentage 
of leukocytes positive for BpOMP staining was also compa-
rable in cultures infected with bimBm and bimBp strains at 2 
and 8 hours postinfection (Figure 5, panel B). However, by 
24 hours, the proportion of BpOMP+ leukocytes was signifi-
cantly higher in cultures infected with bimBm than bimBp strains 
(p = 0.002), and persistence of bimBm isolates was greater in 
CD11c+ dendritic cells (p = 0.012) and F4/80+ macrophages 
(p = 0.006) than bimBp strains (Figure 5, panel C). Overall, 
these data suggest that bimBm strains of B. pseudomallei might 
possess mechanisms to facilitate their internalization and in-
tracellular persistence within professional phagocytes.

Discussion
Although uncommon, neurologic melioidosis is a severe and 
debilitating form of B. pseudomallei infection, primarily  

affecting healthy persons with no recognizable risk fac-
tors and occurring with increased frequency in Australia 
(13,14,22). Diagnosis and management of neurologic 
melioidosis is challenging because of nonspecific clinical 
presentation, poor diagnostics, and intrinsic resistance to 
antibiotics. Similar to other intracellular bacteria, B. pseu-
domallei and B. mallei are able to spread to adjacent host 
cells and evade immune surveillance through the forma-
tion of actin tails in a process that involves polymeriza-
tion of host actin monomers (5,10,23,24). Polymorphisms 
in machinery used for actin assembly in other obligate in-
tracellular bacteria have been reported to influence viru-
lence and tissue tropism (25–27). Recently, isolates pos-
sessing a B. mallei–like bimA allele (bimBm) were shown 
to be associated with neurologic involvement in human 
melioidosis (12). Our study provides in vivo evidence of 
the implications of the bimBm sequence variation on dis-
ease progression and severity of experimental melioido-
sis. Compared with B. pseudomallei isolates with typical 
BimA motifs, bimBm variants were more virulent in an 
animal model of melioidosis when delivered intranasally 
or subcutaneously. This subset of strains was associated 
with increased persistence within phagocytic cells and 
increased likelihood of establishing CNS infection com-
pared with bimBp strains of B. pseudomallei.

Although no evidence from our study indicates prefer-
ential seeding of the CNS compared with other tissues, CNS 
infection did occur with increased frequency and at lower in-
oculating doses after infection of mice with bimBm than bimBp 
strains of B. pseudomallei. Neurologic involvement was ob-
served after intranasal and subcutaneous inoculation with B. 
pseudomallei isolates, although the frequency of CNS infec-
tion increased after intranasal infection. Neurologic involve-
ment, as evidenced by bacterial colonization of the brain 
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Figure 5. Internalization and persistence of bimBm and bimBp Burkholderia pseudomallei isolates within murine leukocytes. Spleen and 
lymph node–derived leukocytes were co-cultured with B. pseudomallei isolates at multiplicity of infection 1:5. A) At 2, 8, and 24 hours 
postinfection, absolute numbers of CD45+ leukocytes were comparable in cultures infected with bimBm and bimBp strains. B) Bacterial 
uptake (2 h) and persistence (8 h and 24 h) was compared by assessing the percentage of CD45+ leukocytes that were positive for 
intracellular B. pseudomallei outer membrane protein antibody (BpOMP) staining using flow cytometry. BpOMP staining increased within 
leukocytes between 8 hours and 24 hours of cultures. Compared with bimBp, the percentage of leukocytes positive for intracellular BpOMP 
was significantly higher in cultures stimulated with bimBm isolates at 24 hours postinfection. Internalization of bimBm or bimBp isolates by 
CD11c+ dendritic cells and F4/80+ macrophages was comparable (not shown). C) However, persistence of bimBm strains was significantly 
higher in dendritic cells and macrophages after 24 hours of culture. Data reflect the mean +SD of 2 independent experiments. BpOMP, B. 
pseudomallei outer membrane protein antibody; DC, dendritic cells; Mφ, macrophages. *p<0.05; **p<0.01; ***p<0.001.
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and neutrophil infiltration to the cranial and spinal menin-
ges, occurred with more frequency in animals infected with 
MSHR543 (bimBm) than those exposed to MSHR305 (bimBp). 
Although we observed considerable variability in the sites of 
abscessation in the CNS, leptomeningitis, meningoencepha-
litis, and encephalomyelitis were common features in ani-
mals that succumbed to infection. Similar neuropathology 
has been reported in experimental models using intravenous 
(rather than intranasal) challenge of mice with B. pseudom-
allei (28). Furthermore, the neuropathology observed in our 
study is consistent with the only published histopathologic 
study of human CNS from patients with melioidosis enceph-
alomyelitis (14).

Clinical and experimental data suggest B. pseudom-
allei is capable of using >1 mechanism for entry into the 
brain and spinal cord (28–37). B. pseudomallei has been 
shown to take advantage of olfactory and trigeminal nerve 
branches to gain direct access to the brain after respiratory 
infection of mice (29–32), and St. John et al. (32) recently 
demonstrated a role for bimA in direct CNS invasion by B. 
pseudomallei. Clinical reports also support progression of 
sinusitis or upper respiratory tract infection with B. pseu-
domallei to neurologic melioidosis (33–35). Additionally, 
cortical brain abscesses, a clinical presentation common-
ly reported for neurologic melioidosis in Southeast Asia 
(33), were observed and are consistent with bacteremic 
spread of B. pseudomallei, directly or through transmigra-
tion of infected leukocytes, to the CNS (28). In addition to 
direct infection through the upper respiratory tract, cases 
of neurologic melioidosis from the Darwin Prospective 
Melioidosis Study have recently provided strong support 
for direct brainstem or spinal cord infection occurring 
through nerve root translocation of bacteria secondary to 
skin inoculation with B. pseudomallei on the face/scalp or 
limbs (36,37). The observation of hind leg paraparesis in 
some animals after B. pseudomallei infection in our study 
provides additional support for this postulated mechanism 
of CNS entry.

In our study, rapid systemic dissemination to secondary 
lymphoid tissues was observed for B. pseudomallei bimBm 
and bimBp variants, with significantly higher bacterial loads 
observed earlier in these tissues after infection with the bimBm 
variant. Moreover, despite significant reduction in intracel-
lular bacterial loads, persistence of B. pseudomallei was 
evident in vitro in dendritic cells and macrophages, tissue 
phagocytic cells that B. pseudomallei would be exposed to 
in the early stages of subcutaneous and intranasal infection. 
We acknowledge that other leukocyte subsets might support 
intracellular infection with B. pseudomallei and therefore 
potentially contribute to rapid dissemination of this bacte-
rium in vivo. We limited our assessment to dendritic cells 
and macrophages because these cells are among the earli-
est responders to infection and are critical for controlling  

B. pseudomallei infection (3,20,21). Skin dendritic cells also 
migrate to secondary lymphoid tissues, facilitating the traf-
ficking and systemic dissemination of live intracellular B. 
pseudomallei (18). Our data support a potential role for pro-
fessional phagocytic cells in rapid systemic dissemination of 
B. pseudomallei to distant sites such as the CNS. 

As an increasing number of clinically derived strains 
are genotyped, it is becoming apparent that the mani-
festations of melioidosis are likely to be influenced by 
the infecting strain, as well as the route of infection, in-
fecting dose, and host risk factors for melioidosis. Our 
findings from this current study provide strong support 
to our clinical observations (12) that bimBm variation is a 
predictor for severe forms of melioidosis, including neu-
rologic involvement. Despite comparative interrogation 
of genomes between B. pseudomallei strains of contrast-
ing virulence (38,39), to date bimA has been identified as 
the only gene with a strong association with neurologic 
melioidosis. However, our observation that bimBp strains 
have the potential to invade the CNS, albeit typically at 
higher inoculating doses than bimBm strains, suggest that 
genes other than bimA also contribute to B. pseudomal-
lei invasion and dissemination in vivo. Under favorable 
circumstances, avirulent B. pseudomallei strains and even 
the closely related but avirulent bacterium, B. thailand-
ensis, can initiate systemic and lethal infection (40,41). 
Identifying and characterizing bacterial effector proteins 
involved in the intracellular and intercellular spread and 
persistence of B. pseudomallei and B. mallei will be criti-
cal for identification of novel agents to manipulate these 
processes with therapeutic application.
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