DISPATCHES

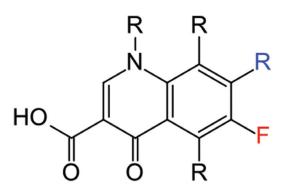
resistance. Int J Antimicrob Agents. 2010;36:255-8. http://dx.doi.org/10.1016/j.ijantimicag.2010.05.011

- Walker J, Fairley CK, Bradshaw CS, Tabrizi SN, Twin J, Chen MY, et al. *Mycoplasma genitalium* incidence, organism load, and treatment failure in a cohort of young Australian women. Clin Infect Dis. 2013;56:1094–100. http://dx.doi.org/10.1093/cid/cis1210
- Tagg KA, Jeoffreys NJ, Couldwell DL, Donald JA, Gilbert GL. Fluoroquinolone and macrolide resistance–associated mutations in *Mycoplasma genitalium*. J Clin Microbiol. 2013;51:2245–9. http://dx.doi.org/10.1128/JCM.00495-13
- Deguchi T, Yasuda M, Horie K, Seike K, Kikuchi M, Mizutani K, et al. Drug resistance–associated mutations in *Mycoplasma genitalium* in female sex workers, Japan. Emerg Infect Dis. 2015;21:1062–4. http://dx.doi.org/10.3201/eid2106.142013
- Dumke R, Thurmer A, Jacobs E. Emergence of Mycoplasma genitalium strains showing mutations associated with macrolide and fluoroquinolone resistance in the region Dresden, Germany. Diagn Microbiol Infect Dis. 2016;86:221–3. http://dx.doi.org/10.1016/j.diagmicrobio.2016.07.005

- Pond MJ, Nori AV, Witney AA, Lopeman RC, Butcher PD, Sadiq ST. High prevalence of antibiotic-resistant *Mycoplasma genitalium* in nongonococcal urethritis: the need for routine testing and the inadequacy of current treatment options. Clin Infect Dis. 2014;58:631–7. http://dx.doi.org/10.1093/cid/cit752
- Le Roy C, Hénin N, Pereyre S, Bébéar C. Fluoroquinoloneresistant *Mycoplasma genitalium*, southwestern France. Emerg Infect Dis. 2016;22:1677–9. http://dx.doi.org/10.3201/eid2209.160446
- 15. Deguchi T, Maeda S, Tamaki M, Yoshida T, Ishiko H, Ito M, et al. Analysis of the gyrA and parC genes of Mycoplasma genitalium detected in first-pass urine of men with non-gonococcal urethritis before and after fluoroquinolone treatment. J Antimicrob Chemother. 2001;48:742–4. http://dx.doi.org/10.1093/jac/48.5.742

Address for correspondence: Gerald L. Murray, The Royal Women's Hospital, Parkville, Victoria, Australia 3052; email: gerald.murray@mcri. edu.au; and Catriona Bradshaw; Central Clinical School, Monash University, Melbourne, Victoria, Australia 3800; email: cbradshaw@mshc.org.au

<u>etymologia</u>


Fluoroquinolone [floor"o-kwin'o-lon]

Ronnie Henry

The first quinolone (*quinol*[ine] + -one [compound related to ketone]), nalidixic acid, was isolated as a byproduct of chloroquine (see "quinine") synthesis and was introduced in 1962 to treat urinary tract infections. In 1980, researchers at the Kyorin Pharmaceutical Company showed that the addition of a fluorine atom to the quinolone ring resulted in an antibiotic with broader antimicrobial activity, which was named norfloxacin, the first fluoroquinolone. In 1983, Bayer published data that showed adding a single carbon atom to norfloxacin—what would become ciprofloxacin—further increased activity. Fluoroquinolones are today among the most frequently used antimicrobial drugs to treat infections in humans and animals.

Sources

- 1. Dorland's Illustrated Medical Dictionary. 32nd ed. Philadelphia: Elsevier Saunders; 2012.
- Ito A, Hirai K, Inoue M, Koga H, Suzue S, Irikura T, et al. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrob Agents Chemother. 1980;17:103–8. http://dx.doi.org/10.1128/AAC.17.2.103
- Petri WA Jr. Sulfonamides, trimethoprim-sulfamethoxazole, quinolones, and agents for urinary tract infections.

By Reubot, Public domain, Wikimedia Commons, https://commons.wikimedia.org/w/index.php?curid=14746558

In: Brunton LL, editor. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 12th ed. New York: McGraw Hill; 2011. p. 1463–76.

 Wise R, Andrews JM, Edwards LJ. In vitro activity of Bay 09867, a new quinoline derivative, compared with those of other antimicrobial agents. Antimicrob Agents Chemother. 1983;23:559–64. http://dx.doi.org/10.1128/ AAC.23.4.559

Address for correspondence: Ronnie Henry, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop E03, Atlanta, GA 30329-4027, USA; email: boq3@cdc.gov

DOI: http://dx.doi.org/10.3201/eid2305.ET2305