Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 12—December 2018
Research

Spatial Analysis of Wildlife Tuberculosis Based on a Serologic Survey Using Dried Blood Spots, Portugal

Nuno Santos1Comments to Author , Telmo Nunes, Carlos Fonseca, Madalena Vieira-Pinto, Virgílio Almeida, Christian Gortázar, and Margarida Correia-Neves
Author affiliations: University of Minho School of Medicine (ICVS), Braga, Portugal (N. Santos, M. Correia-Neves); Portugal Government Associate Laboratory, Braga/Guimarães, ICVS/3B’S, Portugal (N. Santos, M. Correia-Neves); University of Lisbon, Lisbon, Portugal (T. Nunes, V. Almeida); University of Aveiro, Aveiro, Portugal (C. Fonseca); University of Trás-os-Montes e Alto Douro, Vila Real, Portugal (M. Vieira-Pinto); Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain (C. Gortázar)

Main Article

Figure 2

Choropleth map of risk for bovine TB in wildlife, Portugal, showing the probability of the presence of bovine TB in wildlife in counties based on the conditional autoregressive spatial generalized linear mixed model. Stars indicate counties in which Mycobacterium bovis was isolated from free-ranging wildlife, determined on the basis of independent published data (6,29–32). TB, tuberculosis.

Figure 2. Choropleth map of risk for bovine TB in wildlife, Portugal, showing the probability of the presence of bovine TB in wildlife in counties based on the conditional autoregressive spatial generalized linear mixed model. Stars indicate counties in which Mycobacterium bovis was isolated from free-ranging wildlife, determined on the basis of independent published data (6,2932). TB, tuberculosis.

Main Article

References
  1. Gortázar  C, Delahay  RJ, Mcdonald  RA, Boadella  M, Wilson  GJ, Gavier-Widen  D, et al. The status of tuberculosis in European wild mammals. Mammal Rev. 2012;42:193206. DOIGoogle Scholar
  2. Palmer  MV. Mycobacterium bovis: characteristics of wildlife reservoir hosts. Transbound Emerg Dis. 2013;60(Suppl 1):113. DOIPubMedGoogle Scholar
  3. Directorate General for Food and Veterinary Affairs. Animal health technical report: bovine tuberculosis, 2017 [in Portuguese] [cited 2018 Jul 26]. http://www.dgv.min-agricultura.pt/portal/page/portal/DGV.
  4. Vicente  J, Barasona  JA, Acevedo  P, Ruiz-Fons  JF, Boadella  M, Diez-Delgado  I, et al. Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transbound Emerg Dis. 2013;60(Suppl 1):92103. DOIPubMedGoogle Scholar
  5. Boadella  M, Acevedo  P, Vicente  J, Mentaberre  G, Balseiro  A, Arnal  M, et al. Spatio-temporal trends of Iberian wild boar contact with Mycobacterium tuberculosis complex detected by ELISA. EcoHealth. 2011;8:47884. DOIPubMedGoogle Scholar
  6. Santos  N, Correia-Neves  M, Ghebremichael  S, Källenius  G, Svenson  SB, Almeida  V. Epidemiology of Mycobacterium bovis infection in wild boar (Sus scrofa) from Portugal. J Wildl Dis. 2009;45:104861. DOIPubMedGoogle Scholar
  7. Muñoz-Mendoza  M, Marreros  N, Boadella  M, Gortázar  C, Menéndez  S, de Juan  L, et al. Wild boar tuberculosis in Iberian Atlantic Spain: a different picture from Mediterranean habitats. BMC Vet Res. 2013;9:176. DOIPubMedGoogle Scholar
  8. Gilbert  AT, Fooks  AR, Hayman  DT, Horton  DL, Müller  T, Plowright  R, et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth. 2013;10:298313. DOIPubMedGoogle Scholar
  9. Aurtenetxe  O, Barral  M, Vicente  J, de la Fuente  J, Gortázar  C, Juste  RA. Development and validation of an enzyme-linked immunosorbent assay for antibodies against Mycobacterium bovis in European wild boar. BMC Vet Res. 2008;4:43. DOIPubMedGoogle Scholar
  10. Boadella  M, Lyashchenko  K, Greenwald  R, Esfandiari  J, Jaroso  R, Carta  T, et al. Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). J Vet Diagn Invest. 2011;23:7783. DOIPubMedGoogle Scholar
  11. Curry  PS, Ribble  C, Sears  WC, Hutchins  W, Orsel  K, Godson  D, et al. Blood collected on filter paper for wildlife serology: detecting antibodies to Neospora caninum, West Nile virus, and five bovine viruses in reindeer. J Wildl Dis. 2014;50:297307. DOIPubMedGoogle Scholar
  12. Naranjo  V, Gortázar  C, Vicente  J, de la Fuente  J. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet Microbiol. 2008;127:19. DOIPubMedGoogle Scholar
  13. Nugent  G, Whitford  J, Young  N. Use of released pigs as sentinels for Mycobacterium bovis. J Wildl Dis. 2002;38:66577. DOIPubMedGoogle Scholar
  14. Gortázar  C, Vicente  J, Boadella  M, Ballesteros  C, Galindo  RC, Garrido  J, et al. Progress in the control of bovine tuberculosis in Spanish wildlife. Vet Microbiol. 2011;151:1708. DOIPubMedGoogle Scholar
  15. Yockney  IJ, Nugent  G, Latham  MC, Perry  M, Cross  ML, Byrom  AE. Comparison of ranging behaviour in a multi-species complex of free-ranging hosts of bovine tuberculosis in relation to their use as disease sentinels. Epidemiol Infect. 2013;141:140716. DOIPubMedGoogle Scholar
  16. Lopes  F, Borges  J. Wild boar in Portugal. Galemys. 2004;16:24351.
  17. Vingada  J, Fonseca  C, Cancela  J, Ferreira  J, Eira  C. Ungulates and their management in Portugal. In: Appolonio M, Andersen R, Putman R, editors. European ungulates and their management in the 21st century. Cambridge (UK): Cambridge University Press; 2010. p. 392–418.
  18. Santos  N, Geraldes  M, Afonso  A, Almeida  V, Correia-Neves  M. Diagnosis of tuberculosis in the wild boar (Sus scrofa): a comparison of methods applicable to hunter-harvested animals. PLoS One. 2010;5:e12663. DOIPubMedGoogle Scholar
  19. Fleiss  JL, Cohen  J, Everitt  BS. Large sample standard errors of kappa and weighted kappa. Psychol Bull. 1969;72:3237. DOIGoogle Scholar
  20. Gamer  M, Lemon  J, Fellows  I, Singh  P. Various coefficients of interrater reliability and agreement. R package version 0.84; 2012 [cited 2018 Sep 4]. https://cran.r-project.org/web/packages/irr/
  21. European Environmental Agency. Luxembourg NATLAN. Nature/land cover information package; 2006 [cited 2016 Sep 11]. https://www.eea.europa.eu/publications/COR0-landcover
  22. Kulldorff  M. A spatial scan statistic. Commun Stat Theory Methods. 1997;26:148196. DOIGoogle Scholar
  23. Lee  D, Mitchell  R. Boundary detection in disease mapping studies. Biostatistics. 2012;13:41526. DOIPubMedGoogle Scholar
  24. European Environmental Agency. Luxembourg. Biogeograhical regions; 2016 [cited 2016 Sep 11]. www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3#tab-gis-data
  25. Lee  D. CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. J Stat Softw. 2013;55:124. DOIGoogle Scholar
  26. Bosch  J, Peris  S, Fonseca  C, Martínez  M, De La Torre  A, Iglesias  I. Distribution, abundance and density of the wild boar on the Iberian Peninsula, based on the CORINE program and hunting statistics. Folia Zool (Brno). 2012;61:13851. DOIGoogle Scholar
  27. Burnham  KP, Anderson  DR. Model selection and multimodel inference: a practical information-theoretical approach. 2nd ed. New York: Springer; 2002.
  28. Geweke  J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Berger JO, Bernardo JM, Dawid AP, Smith AF, editors. Bayesian statistics. Oxford (UK): Oxford University Press; 2002. p. 169–193.
  29. Vieira-Pinto  M, Alberto  J, Aranha  J, Serejo  J, Canto  A, Cunha  MV, et al. Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from central-east Portugal. Eur J Wildl Res. 2011;57:1189201. DOIGoogle Scholar
  30. Cunha  MV, Matos  F, Canto  A, Albuquerque  T, Alberto  JR, Aranha  JM, et al. Implications and challenges of tuberculosis in wildlife ungulates in Portugal: a molecular epidemiology perspective. Res Vet Sci. 2012;92:22535. DOIPubMedGoogle Scholar
  31. Matos  AC, Figueira  L, Martins  MH, Pinto  ML, Matos  M, Coelho  AC. New insights into Mycobacterium bovis prevalence in wild mammals in Portugal. Transbound Emerg Dis. 2016;63:e31322. DOIPubMedGoogle Scholar
  32. Madeira  S, Manteigas  A, Ribeiro  R, Otte  J, Fonseca  AP, Caetano  P, et al. Factors that influence Mycobacterium bovis infection in red deer and wild boar in an epidemiological risk area for tuberculosis of game species in Portugal. Transbound Emerg Dis. 2017;64:793804. DOIPubMedGoogle Scholar
  33. Parker  SP, Cubitt  WD. The use of the dried blood spot sample in epidemiological studies. J Clin Pathol. 1999;52:6339. DOIPubMedGoogle Scholar
  34. Holland  E, Aegerter  JN, Smith  GC. Spatial sensitivity of a generic population model, using wild boar (Sus scrofa) as a test case. Ecol Modell. 2007;205:14658. DOIGoogle Scholar
  35. LaHue  NP, Baños  JV, Acevedo  P, Gortázar  C, Martínez-López  B. Spatially explicit modeling of animal tuberculosis at the wildlife-livestock interface in Ciudad Real province, Spain. Prev Vet Med. 2016;128:10111. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Research Centre in Biodiversity and Genetic Resources, University of Porto,Vairão, Portugal.

Page created: November 19, 2018
Page updated: November 19, 2018
Page reviewed: November 19, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external