Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 12—December 2018
Research

Genomic Characterization of β-Glucuronidase–Positive Escherichia coli O157:H7 Producing Stx2a

Yoshitoshi OguraComments to Author , Kazuko Seto, Yo Morimoto, Keiji Nakamura, Mitsuhiko P. Sato, Yasuhiro Gotoh, Takehiko Itoh, Atsushi Toyoda, Makoto Ohnishi, and Tetsuya Hayashi
Author affiliations: Kyushu University, Fukuoka, Japan (Y. Ogura, K. Nakamura, M.P. Sato, Y. Gotoh, T. Hayashi); Osaka Institute of Public Health, Osaka, Japan (K. Seto); Hokkaido Institute of Public Health, Hokkaido, Japan (Y. Morimoto); Tokyo Institute of Technology, Tokyo, Japan (T. Itoh); National Institute of Genetics, Shizuoka, Japan (A. Toyoda); National Institute of Infectious Diseases, Tokyo (M. Ohnishi)

Main Article

Figure 1

Schematic illustrating model of the stepwise evolution of STEC O157. The proposed stepwise evolution model of STEC O157 was schematically illustrated according to previous reports (8,9). Clonal complexes (CCs) A1 to A6 are indicated, along with phenotypic changes, antigen shifts, and acquisitions of Stx phages and pO157. Squares indicate contemporary circulating STEC O157 clones. EPEC, enteropathogenic E. coli; GP, β-glucuronidase–positive; NSF, non–sorbitol-fermenting; SF, sorbitol-fermenting;

Figure 1. Schematic illustrating model of the stepwise evolution of STEC O157. The proposed stepwise evolution model of STEC O157 was schematically illustrated according to previous reports (8,9). Clonal complexes (CCs) A1 to A6 are indicated, along with phenotypic changes, antigen shifts, and acquisitions of Stx phages and pO157. Squares indicate contemporary circulating STEC O157 clones. EPEC, enteropathogenic E. coli; GP, β-glucuronidase–positive; NSF, non–sorbitol-fermenting; SF, sorbitol-fermenting; STEC, Stx–producing E. coli.

Main Article

References
  1. Pennington  H. Escherichia coli O157. Lancet. 2010;376:142835. DOIPubMedGoogle Scholar
  2. Scheutz  F, Teel  LD, Beutin  L, Piérard  D, Buvens  G, Karch  H, et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol. 2012;50:295163. DOIPubMedGoogle Scholar
  3. O’Brien  AD, Newland  JW, Miller  SF, Holmes  RK, Smith  HW, Formal  SB. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science. 1984;226:6946. DOIPubMedGoogle Scholar
  4. Boerlin  P, McEwen  SA, Boerlin-Petzold  F, Wilson  JB, Johnson  RP, Gyles  CL. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol. 1999;37:497503.PubMedGoogle Scholar
  5. de Sablet  T, Bertin  Y, Vareille  M, Girardeau  JP, Garrivier  A, Gobert  AP, et al. Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes A and C. Microbiology. 2008;154:17686. DOIPubMedGoogle Scholar
  6. Kawano  K, Okada  M, Haga  T, Maeda  K, Goto  Y. Relationship between pathogenicity for humans and stx genotype in Shiga toxin-producing Escherichia coli serotype O157. Eur J Clin Microbiol Infect Dis. 2008;27:22732. DOIPubMedGoogle Scholar
  7. Ogura  Y, Mondal  SI, Islam  MR, Mako  T, Arisawa  K, Katsura  K, et al. The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep. 2015;5:16663. DOIPubMedGoogle Scholar
  8. Feng  PC, Monday  SR, Lacher  DW, Allison  L, Siitonen  A, Keys  C, et al. Genetic diversity among clonal lineages within Escherichia coli O157:H7 stepwise evolutionary model. Emerg Infect Dis. 2007;13:17016. DOIPubMedGoogle Scholar
  9. Wick  LM, Qi  W, Lacher  DW, Whittam  TS. Evolution of genomic content in the stepwise emergence of Escherichia coli O157:H7. J Bacteriol. 2005;187:178391. DOIPubMedGoogle Scholar
  10. Karch  H, Bielaszewska  M. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H(-) strains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J Clin Microbiol. 2001;39:20439. DOIPubMedGoogle Scholar
  11. Ammon  A, Petersen  LR, Karch  H. A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of Escherichia coli O157:H-. J Infect Dis. 1999;179:12747. DOIPubMedGoogle Scholar
  12. Karch  H, Böhm  H, Schmidt  H, Gunzer  F, Aleksic  S, Heesemann  J. Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157:H-. J Clin Microbiol. 1993;31:12005.PubMedGoogle Scholar
  13. Rosser  T, Dransfield  T, Allison  L, Hanson  M, Holden  N, Evans  J, et al. Pathogenic potential of emergent sorbitol-fermenting Escherichia coli O157:NM. Infect Immun. 2008;76:5598607. DOIPubMedGoogle Scholar
  14. Hayes  PS, Blom  K, Feng  P, Lewis  J, Strockbine  NA, Swaminathan  B. Isolation and characterization of a beta-D-glucuronidase-producing strain of Escherichia coli serotype O157:H7 in the United States. J Clin Microbiol. 1995;33:33478.PubMedGoogle Scholar
  15. Nagano  H, Hirochi  T, Fujita  K, Wakamori  Y, Takeshi  K, Yano  S. Phenotypic and genotypic characterization of beta-D-glucuronidase-positive Shiga toxin-producing Escherichia coli O157:H7 isolates from deer. J Med Microbiol. 2004;53:103743. DOIPubMedGoogle Scholar
  16. Nagano  H, Okui  T, Fujiwara  O, Uchiyama  Y, Tamate  N, Kumada  H, et al. Clonal structure of Shiga toxin (Stx)-producing and beta-D-glucuronidase-positive Escherichia coli O157:H7 strains isolated from outbreaks and sporadic cases in Hokkaido, Japan. J Med Microbiol. 2002;51:40516. DOIPubMedGoogle Scholar
  17. Rump  LV, Strain  EA, Cao  G, Allard  MW, Fischer  M, Brown  EW, et al. Draft genome sequences of six Escherichia coli isolates from the stepwise model of emergence of Escherichia coli O157:H7. J Bacteriol. 2011;193:20589. DOIPubMedGoogle Scholar
  18. Hazen  TH, Sahl  JW, Redman  JC, Morris  CR, Daugherty  SC, Chibucos  MC, et al. Draft genome sequences of the diarrheagenic Escherichia coli collection. J Bacteriol. 2012;194:30267. DOIPubMedGoogle Scholar
  19. Schutz  K, Cowley  LA, Shaaban  S, Carroll  A, McNamara  E, Gally  DL, et al. Evolutionary context of non-sorbitol-fermenting Shiga toxin-producing Escherichia coli O55:H7. Emerg Infect Dis. 2017;23:196673. DOIPubMedGoogle Scholar
  20. Zhou  Z, Li  X, Liu  B, Beutin  L, Xu  J, Ren  Y, et al. Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One. 2010;5:e8700. DOIPubMedGoogle Scholar
  21. Eppinger  M, Mammel  MK, Leclerc  JE, Ravel  J, Cebula  TA. Genomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A. 2011;108:201427. DOIPubMedGoogle Scholar
  22. Hayashi  T, Makino  K, Ohnishi  M, Kurokawa  K, Ishii  K, Yokoyama  K, et al. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res. 2001;8:1122. DOIPubMedGoogle Scholar
  23. Katani  R, Cote  R, Raygoza Garay  JA, Li  L, Arthur  TM, DebRoy  C, et al. Complete genome sequence of SS52, a strain of Escherichia coli O157:H7 recovered from supershedder cattle. Genome Announc. 2015;3:e01569–14. DOIPubMedGoogle Scholar
  24. Kulasekara  BR, Jacobs  M, Zhou  Y, Wu  Z, Sims  E, Saenphimmachak  C, et al. Analysis of the genome of the Escherichia coli O157:H7 2006 spinach-associated outbreak isolate indicates candidate genes that may enhance virulence. Infect Immun. 2009;77:371321. DOIPubMedGoogle Scholar
  25. Latif  H, Li  HJ, Charusanti  P, Palsson  BO, Aziz  RKA. A gapless, unambiguous genome squence of the enterohemorrhagic Escherichia coli O157:H7 strain EDL933. Genome Announc. 2014;2:e00821–14. DOIPubMedGoogle Scholar
  26. Shaaban  S, Cowley  LA, McAteer  SP, Jenkins  C, Dallman  TJ, Bono  JL, et al. Evolution of a zoonotic pathogen: investigating prophage diversity in enterohaemorrhagic Escherichia coli O157 by long-read sequencing. Microb Genom. 2016;2:e000096.PubMedGoogle Scholar
  27. Koren  S, Walenz  BP, Berlin  K, Miller  JR, Bergman  NH, Phillippy  AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:72236. DOIPubMedGoogle Scholar
  28. Hunt  M, Silva  ND, Otto  TD, Parkhill  J, Keane  JA, Harris  SR. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 2015;16:294. DOIPubMedGoogle Scholar
  29. Li  H, Durbin  R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:175460. DOIPubMedGoogle Scholar
  30. Walker  BJ, Abeel  T, Shea  T, Priest  M, Abouelliel  A, Sakthikumar  S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. DOIPubMedGoogle Scholar
  31. Tanizawa  Y, Fujisawa  T, Kaminuma  E, Nakamura  Y, Arita  M. DFAST and DAGA: web-based integrated genome annotation tools and resources. Biosci Microbiota Food Health. 2016;35:17384. DOIPubMedGoogle Scholar
  32. Kajitani  R, Toshimoto  K, Noguchi  H, Toyoda  A, Ogura  Y, Okuno  M, et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res. 2014;24:138495. DOIPubMedGoogle Scholar
  33. Ogura  Y, Gotoh  Y, Itoh  T, Sato  MP, Seto  K, Yoshino  S, et al. Population structure of Escherichia coli O26: H11 with recent and repeated stx2 acquisition in multiple lineages. Microb Genom. 2017;3:e000141. DOIGoogle Scholar
  34. Kurtz  S, Phillippy  A, Delcher  AL, Smoot  M, Shumway  M, Antonescu  C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. DOIPubMedGoogle Scholar
  35. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMedGoogle Scholar
  36. Stamatakis  A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:268890. DOIPubMedGoogle Scholar
  37. Letunic  I, Bork  P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44(W1):W242-5. DOIPubMedGoogle Scholar
  38. Li  W, Godzik  A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:16589. DOIPubMedGoogle Scholar
  39. Ogura  Y, Abe  H, Katsura  K, Kurokawa  K, Asadulghani  M, Iguchi  A, et al. Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171-8 by the combined use of whole-genome PCR scanning and fosmid mapping. J Bacteriol. 2008;190:694860. DOIPubMedGoogle Scholar
  40. Ishijima  N, Lee  KI, Kuwahara  T, Nakayama-Imaohji  H, Yoneda  S, Iguchi  A, et al. Identification of a new virulent clade in enterohemorrhagic Escherichia coli O26:H11/H- sequence type 29. Sci Rep. 2017;7:43136. DOIPubMedGoogle Scholar
  41. Monday  SR, Whittam  TS, Feng  PC. Genetic and evolutionary analysis of mutations in the gusA gene that cause the absence of beta-glucuronidase activity in Escherichia coli O157:H7. J Infect Dis. 2001;184:91821. DOIPubMedGoogle Scholar
  42. Tobe  T, Beatson  SA, Taniguchi  H, Abe  H, Bailey  CM, Fivian  A, et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci U S A. 2006;103:149416. DOIPubMedGoogle Scholar
  43. Rump  LV, Meng  J, Strain  EA, Cao  G, Allard  MW, Gonzalez-Escalona  N. Complete DNA sequence analysis of enterohemorrhagic Escherichia coli plasmid pO157_2 in β-glucuronidase-positive E. coli O157:H7 reveals a novel evolutionary path. J Bacteriol. 2012;194:345763. DOIPubMedGoogle Scholar
  44. Calderwood  SB, Mekalanos  JJ. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J Bacteriol. 1987;169:475964. DOIPubMedGoogle Scholar
  45. Tyler  JS, Mills  MJ, Friedman  DI. The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J Bacteriol. 2004;186:76709. DOIPubMedGoogle Scholar
  46. Wagner  PL, Livny  J, Neely  MN, Acheson  DW, Friedman  DI, Waldor  MK. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol Microbiol. 2002;44:95770. DOIPubMedGoogle Scholar
  47. Shimizu  T, Ohta  Y, Noda  M. Shiga toxin 2 is specifically released from bacterial cells by two different mechanisms. Infect Immun. 2009;77:281323. DOIPubMedGoogle Scholar
  48. Asadulghani  M, Ogura  Y, Ooka  T, Itoh  T, Sawaguchi  A, Iguchi  A, et al. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 2009;5:e1000408. DOIPubMedGoogle Scholar

Main Article

Page created: November 20, 2018
Page updated: November 20, 2018
Page reviewed: November 20, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external