Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 2—February 2018

Yersinia pestis Survival and Replication in Potential Ameba Reservoir

David W. MarkmanComments to Author , Michael F. Antolin, Richard A. Bowen, William H. Wheat, Michael Woods, Mercedes Gonzalez-Juarrero, and Mary Jackson
Author affiliations: Colorado State University, Fort Collins, Colorado, USA (D.W. Markman, M.F. Antolin, R.A. Bowen, W.H. Wheat, M. Gonzalez-Juarrero, M. Jackson); Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA (M. Woods)

Main Article

Figure 1

Infection pathways for plague. During plague epizootics, transmission occurs through flea vectors within meta-populations of ground-dwelling rodents. It is unknown by what route or mechanism Yersinia pestis is maintained during inter-epizootic periods of plague quiescence. Previous research on fleas has not strongly supported their reservoir potential across interepizootic periods (3). The experiment and analysis of the current study tests the hypothesis that amoeboid species demonstrate reservo

Figure 1. Infection pathways for plague. During plague epizootics, transmission occurs through flea vectors within meta-populations of ground-dwelling rodents. It is unknown by what route or mechanism Yersinia pestis is maintained during interepizootic periods of plague quiescence. Previous research on fleas has not strongly supported their reservoir potential across interepizootic periods (3). The experiment and analysis of this study test the hypothesis that amoeboid species demonstrate reservoir potential for Y. pestis. If Y. pestis is maintained within ameba reservoirs, we suspect that epizootic recrudescence may occur when infected soilborne amebae enter the bloodstream of naive rodent hosts (by entering wounds from antagonistic host-to-host interactions or burrowing activities). Amebae typically lyse when incubated at 37°C and simultaneously release their intracellular cargo, potentially initiating an infection.

Main Article

  1. Perry  RD, Fetherston  JD. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev. 1997;10:3566.PubMedGoogle Scholar
  2. Bertherat  E; World Health Organization. Plague around the world, 2010–2015. Wkly Epidemiol Rec. 2016;91:8993.PubMedGoogle Scholar
  3. Webb  CT, Brooks  CP, Gage  KL, Antolin  MF. Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proc Natl Acad Sci U S A. 2006;103:623641. DOIPubMedGoogle Scholar
  4. Girard  JM, Wagner  DM, Vogler  AJ, Keys  C, Allender  CJ, Drickamer  LC, et al. Differential plague-transmission dynamics determine Yersinia pestis population genetic structure on local, regional, and global scales. Proc Natl Acad Sci U S A. 2004;101:840813. DOIPubMedGoogle Scholar
  5. Snäll  T, O’Hara  RB, Ray  C, Collinge  SK. Climate-driven spatial dynamics of plague among prairie dog colonies. Am Nat. 2008;171:23848. DOIPubMedGoogle Scholar
  6. Eisen  RJ, Gage  KL. Adaptive strategies of Yersinia pestis to persist during inter-epizootic and epizootic periods. Vet Res. 2009;40:01.
  7. Gibbons  HS, Krepps  MD, Ouellette  G, Karavis  M, Onischuk  L, Leonard  P, et al. Comparative genomics of 2009 seasonal plague (Yersinia pestis) in New Mexico. PLoS One. 2012;7:e31604. DOIPubMedGoogle Scholar
  8. Lowell  JL, Antolin  MF, Andersen  GL, Hu  P, Stokowski  RP, Gage  KL. Single-nucleotide polymorphisms reveal spatial diversity among clones of Yersinia pestis during plague outbreaks in Colorado and the western United States. Vector Borne Zoonotic Dis. 2015;15:291302. DOIPubMedGoogle Scholar
  9. Salkeld  DJ, Stapp  P, Tripp  DW, Gage  KL, Lowell  J, Webb  CT, et al. Ecological traits driving the outbreaks and emergence of zoonotic pathogens. Bioscience. 2016;66:11829. DOIGoogle Scholar
  10. Pavlovsky  EN. Natural nidality of transmissible diseases, with special reference to the landscape epidemiology of zooanthroponoses. Urbana (IL): University of Illinois Press; 1966.
  11. Gage  KL, Kosoy  MY. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol. 2005;50:50528. DOIPubMedGoogle Scholar
  12. Ayyadurai  S, Houhamdi  L, Lepidi  H, Nappez  C, Raoult  D, Drancourt  M. Long-term persistence of virulent Yersinia pestis in soil. Microbiology. 2008;154:286571. DOIPubMedGoogle Scholar
  13. Benavides-Montaño  JA, Vadyvaloo  V. Yersinia pestis resists predation by Acanthamoeba castellanii and exhibits prolonged intracellular survival. Appl Environ Microbiol. 2017;83:e0059317. DOIPubMedGoogle Scholar
  14. Greub  G, Raoult  D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev. 2004;17:41333. DOIPubMedGoogle Scholar
  15. Hilbi  H, Weber  SS, Ragaz  C, Nyfeler  Y, Urwyler  S. Environmental predators as models for bacterial pathogenesis. Environ Microbiol. 2007;9:56375. DOIPubMedGoogle Scholar
  16. Bichai  F, Payment  P, Barbeau  B. Protection of waterborne pathogens by higher organisms in drinking water: a review. Can J Microbiol. 2008;54:50924. DOIPubMedGoogle Scholar
  17. Salah  IB, Ghigo  E, Drancourt  M. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin Microbiol Infect. 2009;15:894905. DOIPubMedGoogle Scholar
  18. Thomas  V, McDonnell  G, Denyer  SP, Maillard  J-Y. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev. 2010;34:23159. DOIPubMedGoogle Scholar
  19. Wheat  WH, Casali  AL, Thomas  V, Spencer  JS, Lahiri  R, Williams  DL, et al. Long-term survival and virulence of Mycobacterium leprae in amoebal cysts. PLoS Negl Trop Dis. 2014;8:e3405. DOIPubMedGoogle Scholar
  20. Pujol  C, Bliska  JB. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun. 2003;71:58929. DOIPubMedGoogle Scholar
  21. Lambrecht  E, Baré  J, Chavatte  N, Bert  W, Sabbe  K, Houf  K. Protozoan cysts act as a survival niche and protective shelter for foodborne pathogenic bacteria. Appl Environ Microbiol. 2015;81:560412. DOIPubMedGoogle Scholar
  22. Santos-Montañez  J, Benavides-Montaño  JA, Hinz  AK, Vadyvaloo  V. Yersinia pseudotuberculosis IP32953 survives and replicates in trophozoites and persists in cysts of Acanthamoeba castellanii. FEMS Microbiol Lett. 2015;362:fnv091. DOIPubMedGoogle Scholar
  23. Savage  LT, Reich  RM, Hartley  LM, Stapp  P, Antolin  MF. Climate, soils, and connectivity predict plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus). Ecol Appl. 2011;21:293343. DOIGoogle Scholar
  24. Collinge  SK, Johnson  WC, Ray  C, Matchett  R, Grensten  J, Cully  JF Jr, et al. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA. Landsc Ecol. 2005;20:94155. DOIGoogle Scholar
  25. Easterday  WR, Kausrud  KL, Star  B, Heier  L, Haley  BJ, Ageyev  V, et al. An additional step in the transmission of Yersinia pestis? ISME J. 2012;6:2316. DOIPubMedGoogle Scholar
  26. Ke  Y, Chen  Z, Yang  R. Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front Cell Infect Microbiol. 2013;3:106 . DOIPubMedGoogle Scholar
  27. Connor  MG, Pulsifer  AR, Price  CT, Abu Kwaik  Y, Lawrenz  MB. Yersinia pestis requires host Rab1b for survival in macrophages. PLoS Pathog. 2015;11:e1005241. DOIPubMedGoogle Scholar
  28. Nikul’shin  SV, Onatskaia  TG, Lukanina  LM, Bondarenko  AI. [Associations of the soil amoeba Hartmannella rhysodes with the bacterial causative agents of plague and pseudotuberculosis in an experiment] [in Russian]. Zh Mikrobiol Epidemiol Immunobiol. 1992; (9-10):25.PubMedGoogle Scholar
  29. Pushkareva  VI. [Experimental evaluation of interaction between Yersinia pestis and soil infusoria and possibility of prolonged preservation of bacteria in the protozoan oocysts] [in Russian]. Zh Mikrobiol Epidemiol Immunobiol. 2003; (4):404.PubMedGoogle Scholar
  30. Barker  J, Brown  MR. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology. 1994;140:12539. DOIPubMedGoogle Scholar
  31. Link  VB. A history of plague in United States of America. Public Health Monogr. 1955;26:1120.PubMedGoogle Scholar
  32. Lagkouvardos  I, Shen  J, Horn  M. Improved axenization method reveals complexity of symbiotic associations between bacteria and acanthamoebae. Environ Microbiol Rep. 2014;6:3838. DOIPubMedGoogle Scholar
  33. Charette  SJ, Cosson  P. Preparation of genomic DNA from Dictyostelium discoideum for PCR analysis. Biotechniques. 2004;36:5745.PubMedGoogle Scholar
  34. Le Calvez  T, Trouilhé  M-C, Humeau  P, Moletta-Denat  M, Frère  J, Héchard  Y. Detection of free-living amoebae by using multiplex quantitative PCR. Mol Cell Probes. 2012;26:11620. DOIPubMedGoogle Scholar
  35. Schuster  FL. Cultivation of pathogenic and opportunistic free-living amebas. Clin Microbiol Rev. 2002;15:34254. DOIPubMedGoogle Scholar
  36. Thomas  V, Herrera-Rimann  K, Blanc  DS, Greub  G. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol. 2006;72:242838. DOIPubMedGoogle Scholar
  37. Fey  P, Dodson  R, Basu  S, Chisholm  R. One stop shop for everything Dictyostelium: dictyBase and the dicty stock center in 2012. In: Eichinger L, Rivero F, editors. Dictyostelium discoideum protocols. Methods in molecular biology (methods and protocols), vol 983. Totowa, NJ: Humana Press; 2013. p. 59–92.
  38. Molmeret  M, Horn  M, Wagner  M, Santic  M, Abu Kwaik  Y. Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol. 2005;71:208. DOIPubMedGoogle Scholar
  39. Straley  SC, Perry  RD. Environmental modulation of gene expression and pathogenesis in Yersinia. Trends Microbiol. 1995;3:3107. DOIPubMedGoogle Scholar
  40. Grabenstein  JP, Fukuto  HS, Palmer  LE, Bliska  JB. Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun. 2006;74:372741. DOIPubMedGoogle Scholar
  41. Pujol  C, Klein  KA, Romanov  GA, Palmer  LE, Cirota  C, Zhao  Z, et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun. 2009;77:225161. DOIPubMedGoogle Scholar
  42. Clarke  M, Lohan  AJ, Liu  B, Lagkouvardos  I, Roy  S, Zafar  N, et al. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol. 2013;14:R11. DOIPubMedGoogle Scholar
  43. Eichinger  L, Pachebat  JA, Glöckner  G, Rajandream  M-A, Sucgang  R, Berriman  M, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435:4357. DOIPubMedGoogle Scholar
  44. Buzoleva  LS, Sidorenko  ML. [Influence of gaseous metabolites of soil bacteria on the multiplication of Listeria monocytogenes and Yersinia pseudotuberculosis.] [in Russian]. Zh Mikrobiol Epidemiol Immunobiol. 2005; (2):711.PubMedGoogle Scholar
  45. Somova  LM, Buzoleva  LS, Isachenko  AS, Somov  GP. [Adaptive ultrastructural changes in soil-resident Yersinia pseudotuberculosis bacteria] [in Russian]. Zh Mikrobiol Epidemiol Immunobiol. 2006; (3):3640.PubMedGoogle Scholar
  46. Pawlowski  DR, Metzger  DJ, Raslawsky  A, Howlett  A, Siebert  G, Karalus  RJ, et al. Entry of Yersinia pestis into the viable but nonculturable state in a low-temperature tap water microcosm. PLoS One. 2011;6:e17585. DOIPubMedGoogle Scholar

Main Article

Page created: January 17, 2018
Page updated: January 17, 2018
Page reviewed: January 17, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.