Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 1—January 2019

Association of Increased Receptor-Binding Avidity of Influenza A(H9N2) Viruses with Escape from Antibody-Based Immunity and Enhanced Zoonotic Potential

Joshua E. Sealy, Tahir Yaqub, Thomas P. Peacock1, Pengxiang Chang, Burcu Ermetal, Anabel Clements, Jean-Remy Sadeyen, Arslan Mehboob2, Holly Shelton, Juliet E. Bryant, Rod S. Daniels, John W. McCauley, Munir IqbalComments to Author , and Jean-Remy Royal Veterinary CollegeLondonUKSadeyen
Author affiliations: The Pirbright Institute, Pirbright, UK (J.E. Sealy, T.P. Peacock, P. Chang, A. Clements, J.-R. Sadeyen, H. Shelton, M. Iqbal); University of Veterinary and Animal Sciences, Lahore, Pakistan (T. Yaqub, A. Mehboob); The Francis Crick Institute, London (B. Ermetal, R.S. Daniels, J.W. McCauley); Fondation Mérieux, Lyon, France (J.E. Bryant)

Main Article

Figure 2

A) H9 HA monomer showing position of each amino acid substitution on the surface of HA1 of contemporary avian influenza A(H9N2) viruses isolated from Pakistan. HA1 is shown in light gray, HA2 in dark gray, receptor binding site in red, previously identified antigenic sites in green and blue (42,43), and substituted residues identified in this study yellow. Residue 180 is shown in magenta. B) aa alignment of the HA coding region was used to identify substituted residues within the 2014–2016 popul

Figure 2. A) H9 HA monomer showing position of each amino acid substitution on the surface of HA1 of contemporary avian influenza A(H9N2) viruses isolated from Pakistan. HA1 is shown in light gray, HA2 in dark gray, receptor binding site in red, previously identified antigenic sites in green and blue (42,43), and substituted residues identified in this study in yellow. Residue 180 is shown in magenta. B) aa alignment of the HA coding region was used to identify substituted residues within the 2014–2016 population of Pakistan viruses. Shown is the crystal structure of swine H9 hemagglutinin PDB ID:1JSD (44), which was drawn by using PyMol software ( Matrix diagram shows diversity of HA1 surface substitutions and the total number of viruses with a given substitution. Mature H9 numbering is used throughout. aa, amino acid; HA, hemagglutinin.

Main Article

  1. Dalby  AR, Iqbal  M. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin. PeerJ. 2014;2:e655. DOIPubMedGoogle Scholar
  2. Chen  B, Zhang  Z, Chen  W. The study of avian influenza: I. The isolation and preliminary serological identification of avian influenza virus in chicken [in Chinese]. Chin J Vet Med. 1994;20:35.
  3. Zecchin  B, Minoungou  G, Fusaro  A, Moctar  S, Ouedraogo-Kaboré  A, Schivo  A, et al. Influenza A (H9N2) virus, Burkina Faso. Emerg Infect Dis. 2017;23:21189. DOIPubMedGoogle Scholar
  4. Aamir  UB, Wernery  U, Ilyushina  N, Webster  RG. Characterization of avian H9N2 influenza viruses from United Arab Emirates 2000 to 2003. Virology. 2007;361:4555. DOIPubMedGoogle Scholar
  5. Alexander  DJ. Report on avian influenza in the Eastern Hemisphere during 1997-2002. Avian Dis. 2003;47(Suppl):7927. DOIPubMedGoogle Scholar
  6. Kim  JA, Cho  SH, Kim  HS, Seo  SH. H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers. Vet Microbiol. 2006;118:16976. DOIPubMedGoogle Scholar
  7. Lindh  E, Ek-Kommonen  C, Väänänen  V-M, Vaheri  A, Vapalahti  O, Huovilainen  A. Molecular epidemiology of H9N2 influenza viruses in Northern Europe. Vet Microbiol. 2014;172:54854. DOIPubMedGoogle Scholar
  8. Monne  I, Hussein  HA, Fusaro  A, Valastro  V, Hamoud  MM, Khalefa  RA, et al. H9N2 influenza A virus circulates in H5N1 endemically infected poultry population in Egypt. Influenza Other Respi Viruses. 2013;7:2403. DOIPubMedGoogle Scholar
  9. Naeem  K, Siddique  N, Ayaz  M, Jalalee  MA. Avian influenza in Pakistan: outbreaks of low- and high-pathogenicity avian influenza in Pakistan during 2003-2006. Avian Dis. 2007;51(Suppl):18993. DOIPubMedGoogle Scholar
  10. Butt  KM, Smith  GJ, Chen  H, Zhang  LJ, Leung  YH, Xu  KM, et al. Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol. 2005;43:57607. DOIPubMedGoogle Scholar
  11. Huang  Y, Li  X, Zhang  H, Chen  B, Jiang  Y, Yang  L, et al. Human infection with an avian influenza A (H9N2) virus in the middle region of China. J Med Virol. 2015;87:16418. DOIPubMedGoogle Scholar
  12. Khan  SU, Anderson  BD, Heil  GL, Liang  S, Gray  GC. A systematic review and meta-analysis of the seroprevalence of influenza A (H9N2) infection among humans. J Infect Dis. 2015;212:5629. DOIPubMedGoogle Scholar
  13. Pawar  SD, Tandale  BV, Raut  CG, Parkhi  SS, Barde  TD, Gurav  YK, et al. Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010. PLoS One. 2012;7:e36374. DOIPubMedGoogle Scholar
  14. Hoa  LNM, Tuan  NA, My  PH, Huong  TTK, Chi  NTY, Hau Thu  TT, et al.; The Vizions Consortium. Assessing evidence for avian-to-human transmission of influenza A/H9N2 virus in rural farming communities in northern Vietnam. J Gen Virol. 2017;98:20116. DOIPubMedGoogle Scholar
  15. Thuy  DM, Peacock  TP, Bich  VTN, Fabrizio  T, Hoang  DN, Tho  ND, et al. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014. Infect Genet Evol. 2016;44(suppl C):53040. DOIPubMedGoogle Scholar
  16. Iqbal  M, Yaqub  T, Reddy  K, McCauley  JW. Novel genotypes of H9N2 influenza A viruses isolated from poultry in Pakistan containing NS genes similar to highly pathogenic H7N3 and H5N1 viruses. PLoS One. 2009;4:e5788. DOIPubMedGoogle Scholar
  17. Peacock  TP, Benton  DJ, Sadeyen  J-R, Chang  P, Sealy  JE, Bryant  JE, et al. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion. Emerg Microbes Infect. 2017;6:e11. DOIPubMedGoogle Scholar
  18. Taubenberger  JK, Reid  AH, Lourens  RM, Wang  R, Jin  G, Fanning  TG. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437:88993. DOIPubMedGoogle Scholar
  19. Rogers  GN, Paulson  JC, Daniels  RS, Skehel  JJ, Wilson  IA, Wiley  DC. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983;304:768. DOIPubMedGoogle Scholar
  20. Chan  RWY, Chan  LLY, Mok  CKP, Lai  J, Tao  KP, Obadan  A, et al. Replication of H9 influenza viruses in the human ex vivo respiratory tract, and the influence of neuraminidase on virus release. Sci Rep. 2017;7:6208. DOIPubMedGoogle Scholar
  21. Seo  SH, Hoffmann  E, Webster  RG. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med. 2002;8:9504. DOIPubMedGoogle Scholar
  22. Cui  L, Liu  D, Shi  W, Pan  J, Qi  X, Li  X, et al. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun. 2014;5:3142. DOIPubMedGoogle Scholar
  23. Cameron  KR, Gregory  V, Banks  J, Brown  IH, Alexander  DJ, Hay  AJ, et al. H9N2 subtype influenza A viruses in poultry in pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong. Virology. 2000;278:3641. DOIPubMedGoogle Scholar
  24. Mitnaul  LJ, Matrosovich  MN, Castrucci  MR, Tuzikov  AB, Bovin  NV, Kobasa  D, et al. Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol. 2000;74:601520. DOIPubMedGoogle Scholar
  25. Sun  Y, Tan  Y, Wei  K, Sun  H, Shi  Y, Pu  J, et al. Amino acid 316 of hemagglutinin and the neuraminidase stalk length influence virulence of H9N2 influenza virus in chickens and mice. J Virol. 2013;87:29638. DOIPubMedGoogle Scholar
  26. Baigent  SJ, McCauley  JW. Influenza type A in humans, mammals and birds: determinants of virus virulence, host-range and interspecies transmission. BioEssays. 2003;25:65771. DOIPubMedGoogle Scholar
  27. Skehel  JJ, Wiley  DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69:53169. DOIPubMedGoogle Scholar
  28. Shinya  K, Ebina  M, Yamada  S, Ono  M, Kasai  N, Kawaoka  Y. Avian flu: influenza virus receptors in the human airway. Nature. 2006;440:4356. DOIPubMedGoogle Scholar
  29. Connor  RJ, Kawaoka  Y, Webster  RG, Paulson  JC. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology. 1994;205:1723. DOIPubMedGoogle Scholar
  30. França  M, Stallknecht  DE, Howerth  EW. Expression and distribution of sialic acid influenza virus receptors in wild birds. Avian Pathol. 2013;42:6071. DOIPubMedGoogle Scholar
  31. Lin  YP, Xiong  X, Wharton  SA, Martin  SR, Coombs  PJ, Vachieri  SG, et al. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. Proc Natl Acad Sci U S A. 2012;109:214749. DOIPubMedGoogle Scholar
  32. Wan  H, Perez  DR. Amino acid 226 in the hemagglutinin of H9N2 influenza viruses determines cell tropism and replication in human airway epithelial cells. J Virol. 2007;81:518191. DOIPubMedGoogle Scholar
  33. Sang  X, Wang  A, Ding  J, Kong  H, Gao  X, Li  L, et al. Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets. Sci Rep. 2015;5:15928. DOIPubMedGoogle Scholar
  34. Gambaryan  AS, Tuzikov  AB, Pazynina  GV, Desheva  JA, Bovin  NV, Matrosovich  MN, et al. 6-sulfo sialyl Lewis X is the common receptor determinant recognized by H5, H6, H7 and H9 influenza viruses of terrestrial poultry. Virol J. 2008;5:85. DOIPubMedGoogle Scholar
  35. Teng  Q, Xu  D, Shen  W, Liu  Q, Rong  G, Li  X, et al. A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice. J Virol. 2016;90:980625. DOIPubMedGoogle Scholar
  36. Yang  W, Punyadarsaniya  D, Lambertz  RL, Lee  DC, Liang  CH, Höper  D, et al. Mutations during the adaptation of H9N2 avian influenza virus to the respiratory epithelium of pigs enhance sialic acid binding activity and virulence in mice. J Virol. 2017;91:e0212516. DOIPubMedGoogle Scholar
  37. Naeem  K, Ullah  A, Manvell  RJ, Alexander  DJ. Avian influenza A subtype H9N2 in poultry in Pakistan. Vet Rec. 1999;145:560. DOIPubMedGoogle Scholar
  38. Shanmuganatham  K, Feeroz  MM, Jones-Engel  L, Walker  D, Alam  S, Hasan  M, et al. Genesis of avian influenza H9N2 in Bangladesh. Emerg Microbes Infect. 2014;3:e88. DOIPubMedGoogle Scholar
  39. Pu  J, Wang  S, Yin  Y, Zhang  G, Carter  RA, Wang  J, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proc Natl Acad Sci U S A. 2015;112:54853. DOIPubMedGoogle Scholar
  40. Chen  J, Lee  KH, Steinhauer  DA, Stevens  DJ, Skehel  JJ, Wiley  DC. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell. 1998;95:40917. DOIPubMedGoogle Scholar
  41. Baron  J, Tarnow  C, Mayoli-Nüssle  D, Schilling  E, Meyer  D, Hammami  M, et al. Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol. 2013;87:181120. DOIPubMedGoogle Scholar
  42. Peacock  T, Reddy  K, James  J, Adamiak  B, Barclay  W, Shelton  H, et al. Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci Rep. 2016;6:18745. DOIPubMedGoogle Scholar
  43. Matrosovich  M, Matrosovich  T, Carr  J, Roberts  NA, Klenk  H-D. Overexpression of the α-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol. 2003;77:841825. DOIPubMedGoogle Scholar
  44. Wiley  DC, Skehel  JJ. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:36594. DOIPubMedGoogle Scholar
  45. Ha  Y, Stevens  DJ, Skehel  JJ, Wiley  DC. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc Natl Acad Sci U S A. 2001;98:111816. DOIPubMedGoogle Scholar
  46. Peacock  TP, Benton  DJ, James  J, Sadeyen  J-R, Chang  P, Sealy  JE, et al. Immune escape variants of H9N2 influenza viruses containing deletions at the haemagglutinin receptor binding site retain fitness in vivo and display enhanced zoonotic characteristics. J Virol. 2017;91:e00218717. DOIPubMedGoogle Scholar
  47. Both  GW, Sleigh  MJ, Cox  NJ, Kendal  AP. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. J Virol. 1983;48:5260.PubMedGoogle Scholar
  48. Cattoli  G, Milani  A, Temperton  N, Zecchin  B, Buratin  A, Molesti  E, et al. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. J Virol. 2011;85:871824. DOIPubMedGoogle Scholar
  49. Hensley  SE, Das  SR, Bailey  AL, Schmidt  LM, Hickman  HD, Jayaraman  A, et al. Hemagglutinin receptor binding avidity drives influenza A virus antigenic drift. Science. 2009;326:7346. DOIPubMedGoogle Scholar
  50. Li  Y, Bostick  DL, Sullivan  CB, Myers  JL, Griesemer  SB, Stgeorge  K, et al. Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering. J Virol. 2013;87:990410. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Imperial College London, London, UK.

2Current affiliation: Chinese Academy of Agricultural Sciences, Beijing, China.

Page created: December 18, 2018
Page updated: December 18, 2018
Page reviewed: December 18, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.