Article DOI: https://doi.org/10.3201/eid2512.190267

Genomic Analysis of Fluoroquinolone- and Tetracycline-Resistant *Campylobacter jejuni* Sequence Type 6964 in Humans and Poultry, New Zealand, 2014–2016

Appendix

Further details of participating human diagnostic laboratories and poultry farm survey

The laboratories that referred isolates for the human case survey were Labtests, Auckland; Pathlab Bay of Plenty; Aotea Pathology, Wellington; Canterbury Southern Community Laboratories, Christchurch; and Southern Community Laboratories, Dunedin. Details of the survey are provided are provided in the report by Williamson, Dyet (1).

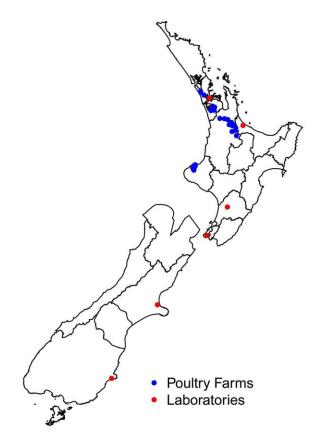
For the poultry cecal surveys pooled cecal samples (each containing cecal contents from 5 chickens) were taken from 4 poultry companies at slaughter. One study was conducted between May 25, 2015 and June 02, 2015 and the other between July 07, 2015 and March 25, 2016. A total of 897 pooled cecal samples from broiler and breeder flocks were processed, of which 53.7% (482/897) were positive for growth typical of *Campylobacter* on selective media containing ciprofloxacin and tetracycline. Only six composite samples were received from the small Company D and none of these samples yielded growth on the mCCDA + cip/tet plates. A random subset of 291 isolates were speciated by PCR and all were confirmed as *C. jejuni*. A further subset of 99 of the 291 isolates were subtyped by 7-gene MLST and all were confirmed as ST-6964. Given the high probability that isolates (from 118 pooled samples) were randomly selected for WGS, and all were confirmed by WGS as ST-6964 (39 by 7-gene MLST and WGS and 97 by WGS only).

A map showing the location of the participating laboratories and the poultry farms from which *C. jejuni* ST 6964 positive cecal samples were taken for analysis is shown in Appendix Figure 1.

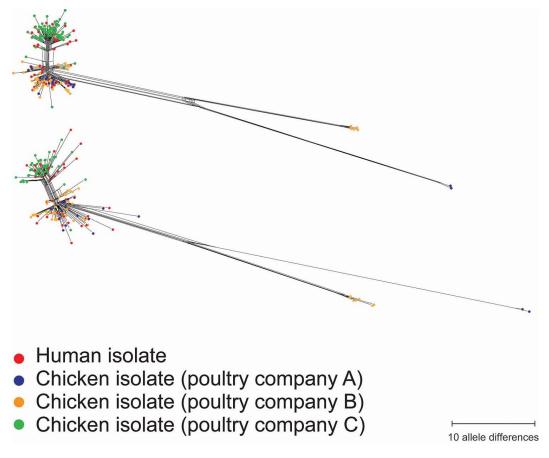
References

- 1. Williamson D, Dyet K, Heffernan H. Antimicrobial resistance in human isolates of *Campylobacter jejuni*, 2015: Institute of Environmental Science and Research Limited; 2015.
- Marasini D, Fakhr MK. Whole-genome sequencing of a *Campylobacter jejuni* strain isolated from retail chicken meat reveals the presence of a megaplasmid with Mu-like prophage and multidrug resistance genes. Genome Announc. 2016;4:e00460-16. <u>PubMed</u> https://doi.org/10.1128/genomeA.00460-16
- 3. Marasini D, Fakhr MK. Complete genome sequences of plasmid-bearing multidrug-resistant *Campylobacter jejuni* and *Campylobacter coli* strains with type VI secretion systems, isolated from retail turkey and pork. Genome Announc. 2017;5:e01360-17. <u>PubMed</u> <u>https://doi.org/10.1128/genomeA.01360-17</u>
- 4. Marasini D, Fakhr MK. Complete genome sequences of *Campylobacter jejuni* strains isolated from retail chicken and chicken gizzards. Genome Announc. 2017;5:e01351-17. <u>PubMed</u> <u>https://doi.org/10.1128/genomeA.01351-17</u>
- Crespo MD, Altermann E, Olson J, Miller WG, Chandrashekhar K, Kathariou S. Novel plasmid conferring kanamycin and tetracycline resistance in the turkey-derived *Campylobacter jejuni* strain 11601MD. Plasmid. 2016;86:32–7. <u>PubMed https://doi.org/10.1016/j.plasmid.2016.06.001</u>
- 6. Gunther NW IV, Reichenberger ER. Complete genome sequence of *Campylobacter jejuni* RM1246-ERRC, which exhibits resistance to quaternary ammonium compounds. Genome Announc. 2017;5:e00978-17. <u>PubMed https://doi.org/10.1128/genomeA.00978-17</u>
- Batchelor RA, Pearson BM, Friis LM, Guerry P, Wells JM. Nucleotide sequences and comparison of two large conjugative plasmids from different *Campylobacter* species. Microbiology. 2004;150:3507–17. <u>PubMed https://doi.org/10.1099/mic.0.27112-0</u>
- Marasini D, Fakhr MK. Complete genome sequences of *Campylobacter jejuni* strains OD267 and WP2202 isolated from retail chicken livers and gizzards reveal the presence of novel 116-Kilobase and 119-Kilobase megaplasmids with type VI secretion systems. Genome Announc. 2016;4:e01060-16. <u>PubMed https://doi.org/10.1128/genomeA.01060-16</u>

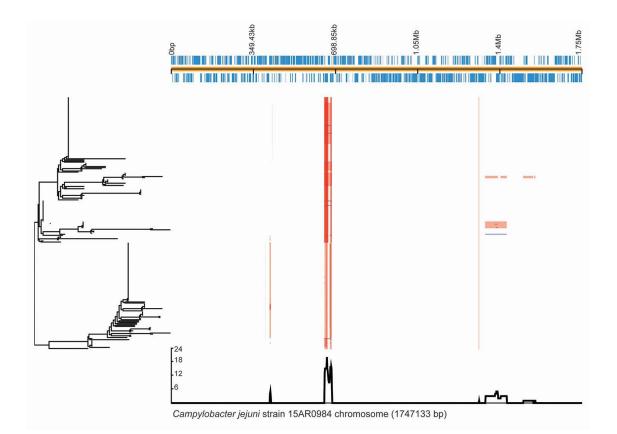
- 9. Taveirne ME, Dunham DT, Perault A, Beauchamp JM, Huynh S, Parker CT, et al. Complete annotated genome sequences of three *Campylobacter jejuni* strains isolated from naturally colonized farmraised chickens. Genome Announc. 2017;5:e01407-16. <u>PubMed</u> <u>https://doi.org/10.1128/genomeA.01407-16</u>
- 10. Zhang M, He L, Li Q, Sun H, Gu Y, You Y, et al. Genomic characterization of the Guillain-Barre syndrome-associated *Campylobacter jejuni* ICDCCJ07001 Isolate. PLoS One. 2010;5:e15060. <u>PubMed https://doi.org/10.1371/journal.pone.0015060</u>
- 11. Cooper KK, Cooper MA, Zuccolo A, Law B, Joens LA. Complete genome sequence of *Campylobacter jejuni* strain S3. J Bacteriol. 2011;193:1491–2. <u>PubMed</u> <u>https://doi.org/10.1128/JB.01475-10</u>

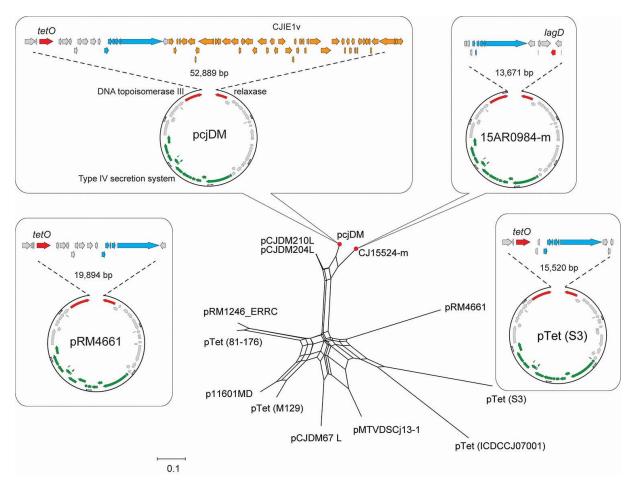

Appendix Table 1. Details of the plasmids used in the comparative analysis of plasmid 15AR0984-m from the reference strain of ST-6964 used in this study

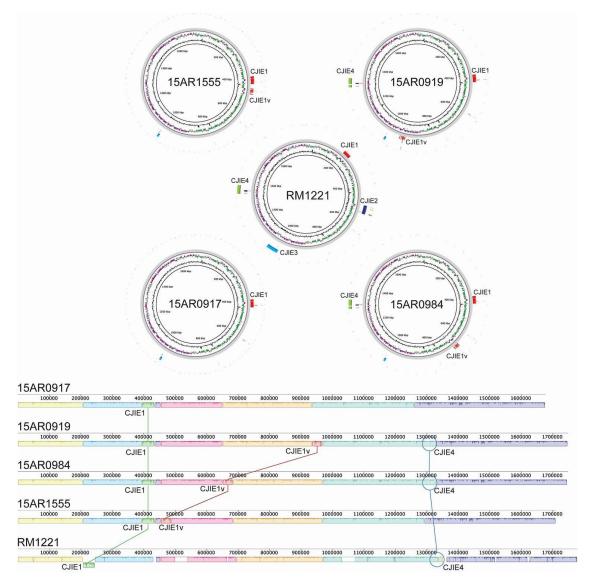
Accession no.	Reference	Description	
CP013117.1	(2)	C. jejuni strain T1–21 plasmid pcjDM	
CP017857.1	(3)	C. jejuni strain YQ2210 plasmid pCJDM210L	
CP017854.1	(4)	C. jejuni strain ZP3204 plasmid pCJDM204L	
KJ646012.1	(5)	C. jejuni strain 11601MD plasmid p11601MD	
CP022471.1	(6)	C. jejuni strain RM1246-ERRC plasmid pRM1246_ERRC	
AY394561.1	(7)	C. jejuni strain 81–176 plasmid pTet	
CP014745.1	(8)	C. jejuni strain OD267 plasmid pCJDM67 L	
CP017418.1	(9)	C. jejuni strain MTVDSCj13 plasmid pMTVDSCj13–1	
CP007750.1	Not applicable	C. jejuni strain M129 plasmid pTet-M129	
CP007182.1	Not applicable	C. coli strain RM4661 plasmid pRM4661	
CP002030.1	(10)	C. jejuni strain ICDCCJ07001 plasmid pTet	
CP001961.1	(11)	C. jejuni strain S3 plasmid pTet	

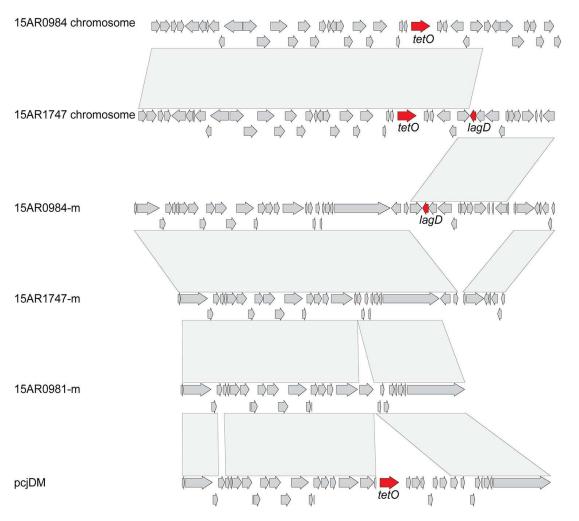

Alias	Gene	Function	Locus tag
ene577		Hypothetical protein	15AR0984_00592
ene1430		Peptidylprolyl isomerase	15AR0984_01465
ene1431	accC	Biotin carboxylase	15AR0984_01466
ene1432	accB	Biotin carboxyl carrier protein of acetyl-coa carboxylase	15AR0984_01467
ene1433	dcd	Deoxycytidine triphosphate deaminase	15AR0984_01468
iene1434	pseB	UDP-N-acetylglucosamine 4,6-dehydratase (inverting)	15AR0984_01469
Gene1435	pseC	UDP-4-amino-4, 6-dideoxy-N-acetyl-β-L-altrosamine transaminase	15AR0984_01470
ene1437		Putative polysaccharide biosynthesis protein with aminopeptidase-	15AR0984_01472
		like domain protein	15100001 01170
Sene1441		Hypothetical protein	15AR0984_01476
Sene1442	fabH	3-oxoacyl-[acyl-carrier-protein] synthase 3	15AR0984_01477
Gene1443		Hypothetical protein	15AR0984_01478
Gene1444		Hypothetical protein	15AR0984_01479
Gene1445		Hypothetical protein Hypothetical protein	15AR0984_01480
Gene1449	log T		15AR0984_01484
Gene1454 Gene1455	legF	CMP-N,N'-diacetyllegionaminic acid synthase	15AR0984_01489 15AR0984_01490
	pseG	UDP-2,4-diacetamido-2,4, 6-trideoxy-β-L-altropyranose hydrolase	
Gene1456	pseH	UDP-4-amino-4, 6-dideoxy-N-acetyl-β-L-altrosamine N- acetyltransferase	15AR0984_01491
Gene1457	hisF	Imidazole glycerol phosphate synthase subunit hisf	15AR0984 01492
Sene1457	hisH1	Imidazole glycerol phosphate synthase subunit hish 1	15AR0984_01492
Sene1458	1113111	Hypothetical protein	15AR0984_01493
Sene1461	rmlB	Dtdp-glucose 4,6-dehydratase	15AR0984_01494
Sene1464	legl	N,N'-diacetyllegionaminic acid synthase	15AR0984_01490
Sene1469	hddC	D-glycero-α-D-manno-heptose 1-phosphate guanylyltransferase	15AR0984_01504
Sene1470	1000	Hypothetical protein	15AR0984_01505
Sene1471	legF	CMP-N.N'-diacetyllegionaminic acid synthase	15AR0984_01506
Sene1472	lvr	Levodione reductase	15AR0984_01507
Sene1476		Hypothetical protein	15AR0984_01511
Sene1481		Hypothetical protein	15AR0984_01516
Sene1482		Hypothetical protein	15AR0984_01517
Sene1483	хсрТ	Type II secretion system protein G	15AR0984_01518
Gene1484	tsaD	Trna N6-adenosine threonylcarbamoyltransferase	15AR0984_01519
Sene1486	dxr	1-deoxy-D-xylulose 5-phosphate reductoisomerase	15AR0984_01521
Sene1487	cdsA	Phosphatidate cytidylyltransferase	15AR0984_01522
Gene1488		Hypothetical protein	15AR0984_01523
Gene1489		Hypothetical protein	15AR0984_01524
Gene1491		Putative phospholipase A1	15AR0984_01526
Sene1492	feuB	Iron-uptake system permease protein feub	15AR0984_01527
Gene1493	feuC	Iron-uptake system permease protein feuc	15AR0984_01528
Gene1494	fhuC	Iron(3+)-hydroxamate import ATP binding protein fhuc	15AR0984_01529
Gene1496		Hypothetical protein	15AR0984_01532
Gene1497	nrfA	Cytochrome c-552	15AR0984_01533
Gene1498	nrfH	Cytochrome c-type protein nrfh	15AR0984_01534
Gene1499	ppk	Polyphosphate kinase	15AR0984_01535
Gene1504		Hypothetical protein	15AR0984_01541
Gene1505	ruvB	Holliday junction ATP-dependent DNA helicase ruvb	15AR0984_01542
ene1507	fumC	Fumarate hydratase class II	15AR0984_01544
ene1509	glmS	Glutamine-fructose-6-phosphate aminotransferase [isomerizing]	15AR0984_01546
ene1511	mqnE	Aminodeoxyfutalosine synthase	15AR0984_01548
ene1512	adeQ	Adenine permease adeq	15AR0984_01549
Sene1513	pyrE	Orotate phosphoribosyltransferase	15AR0984_01550
Sene1514	mlaA	Putative phospholipid binding lipoprotein mlaa	15AR0984_01551
Sene1515	mlaC	Putative phospholipid binding protein mlac	15AR0984_01552
ene1516	,	Bifunctional preprotein translocase subunit secd/secf	15AR0984_01553
Sene1589	kpsM	Polysialic acid transport protein kpsm	15AR0984_01626
Sene1590		Hypothetical protein	15AR0984_01627
Gene1591		Hypothetical protein	15AR0984_01628
Sene1592		Dutpase	15AR0984_01629
Sene1593		Hypothetical protein	15AR0984_01630
Sene1595	rimO	Ribosomal protein S12 methylthiotransferase rimo	15AR0984_01632
Sene1596	prfB	Peptide chain release factor 2	15AR0984_01633
Sene1597		Hypothetical protein	15AR0984_01634
Sene1598	truD	Trna pseudouridine synthase D	15AR0984_01635
Gene1599	thiL	Thiamine-monophosphate kinase Hypothetical protein	15AR0984_01636 15AR0984_01638
Gene1601			

Appendix Table 2. The 87 wgMLST shared-loci that were within the Gubbins predicted recombination regions. The aliases in the
first column correspond to the gene names used in the wgMLST analysis.


Alias	Gene	Function	Locus tag
Gene1602	rsmD	Ribosomal RNA small subunit methyltransferase D	15AR0984_01639
Gene1603	flgl	Flagellar P-ring protein	15AR0984_01640
Gene1604		Hypothetical protein	15AR0984_01641
Gene1605		Anti-sigma-28 factor, flgm	15AR0984_01642
Gene1606		FIgn protein	15AR0984_01643
Gene1607	flgK	Flagellar hook-associated protein 1	15AR0984_01644
Gene1609		Hypothetical protein	15AR0984_01646
Gene1616	por	Pyruvate synthase	15AR0984_01653
Gene1617	ppaX	Pyrophosphatase ppax	15AR0984_01654
Gene1618	oprF	Outer membrane porin F	15AR0984_01655
Gene1619	rpsl	30S ribosomal protein S9	15AR0984_01656
Gene1620	rpIM	50S ribosomal protein L13	15AR0984_01657
Gene1621	addA	ATP-dependent helicase/nuclease subunit A	15AR0984_01658
Gene1624		Hypothetical protein	15AR0984_01661
Gene1625		Hypothetical protein	15AR0984_01662
Gene1626		Hypothetical protein	15AR0984_01663
Gene1627	fixP	Cbb3-type cytochrome c oxidase subunit fixp	15AR0984_01664
Gene1628		Cbb3-type cytochrome oxidase component fixq	15AR0984_01665
Gene1629		Cytochrome C oxidase, mono-heme subunit/fixo	15AR0984_01666
Gene1630	ccoN1	Cbb3-type cytochrome c oxidase subunit ccon1	15AR0984_01667
Gene1631	mprA	Response regulator mpra	15AR0984_01668
Gene1640	-	Hypothetical protein	15AR0984_01678
Gene1641	putP	Sodium/proline symporter	15AR0984_01679


Appendix Figure 1. The location of the poultry farms from which *C. jejuni* ST 6964 positive cecal samples were taken and the diagnostic laboratories that submitted human isolates including the 5 that participated in the human survey and the MidCentral laboratory in the Manawatu sentinel site.


Appendix Figure 2. Pairwise distances and NeighborNet networks of the 227 *C. jejuni* ST-6964 isolates calculated by two independent wgMLST methods. The upper network was generated from the 1,363 shared loci found in the ad hoc wgMLST analysis; and the lower network was generated with the *C. jejuni* cgMLST scheme (1,343 loci) on the PubMLST Web site.


Appendix Figure 3. Recombination detected in 227 *C. jejuni* ST-6964 isolates. Coding regions are shown on both the forward and reverse strand of the annotated *C. jejuni* 15AR0984 reference genome. The tree is the inferred mid-point rooted phylogeny of 227 *C. jejuni* ST-6964 isolates and reference 15AR0984 genome is shown to the left and the recombination blocks identified by Gubbins are shown to the right of the tree; red indicates conserved blocks, blue indicates blocks detected in just one representative. The lower plot (black line) summarizes the number of recombination events across the entire *C. jejuni* reference genome.

Appendix Figure 4. NeighborNet phylogenetic relationship of the plasmid identified in the complete genome of isolate 15AR0984 related to nine other representative 'pTet-like' plasmids, based on the allele profiles of the 23 shared-loci. The genome structures of the closest plasmid pcjDM (four allele differences) and the other three plasmids were plotted to demonstrate the consensus regions (backbone) and hyper-variable regions in the plasmids.

Appendix Figure 5. The insertion locations of mobile elements CJIE1, CJIE1v and CJIE4 are illustrated in a whole genome alignment of the four complete genomes of ST-6964 isolates (15AR0984, 15AR0917, 15AR0919 and 15AR1555) and the reference RM1221. The upper rings were generated with the BLAST Ring Image Generator (BRIG) and the lower linear plots with Mauve. The mobile element CJIE1 was present in all isolates. CJIE1v was inserted in the three different locations in three of the ST-6964 isolate genomes.

Appendix Figure 6. High-scoring Segment Pairs (HSPs) between the chromosome and plasmid sequences of the strain 15AR0984, 15AR1747, 15AR0981 and T1–21 (pcjDM) were connected with gray bars to demonstrate similar regions. We hypothesize the *lagD* and *tetO* genes were in the same region and located in the plasmid of the ST-6964 ancestor strain, and the genome structure of the region in the ancestral plasmid was similar to the equivalent region in the chromosome of isolate 15AR1747. Subsequently, we hypothesize, this region was excised from the 15AR1747-m plasmid and integrated into its chromosome, leaving *lagD* still in the 15AR0984-m plasmid. Alternatively, the *tetO* could be carried by a pcJDM-like plasmid, and subsequently excised from the 15AR0981-m plasmid and integrated the chromosomes (15AR0984 and 15AR1747 chromosomes).