Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 12—December 2019
Dispatch

Divergent Barmah Forest Virus from Papua New Guinea

Leon CalyComments to Author , Paul F. Horwood, Dhanasekaran Vijaykrishna, Stacey Lynch, Andrew R. Greenhill, William Pomat, Glennis Rai, Debbie Kisa, Grace Bande, Julian Druce, and Mohammad Y. AbdadComments to Author 
Author affiliations: Victorian Infectious Diseases Reference Laboratory of Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia (L. Caly, J. Druce); James Cook University, Townsville, Queensland, Australia (P.F. Horwood); Monash University, Clayton, Victoria, Australia (D. Vijaykrishna); AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia (S. Lynch); Federation University Australia, Gippsland, Victoria, Australia (A.R. Greenhill); Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea (W. Pomat, G. Rai, D. Kisa); Divine Word University, Madang, Papua New Guinea (G. Bande); National Centre for Infectious Diseases, Singapore (M.Y. Abdad)

Main Article

Figure 2

Phylogenetic relationships between 9 full-length (1,263 nt) Barmah Forest virus (BFV) envelope (E) protein genes. A) Maximum-likelihood phylogenetic tree constructed from 8 full-length Australia BFV E2 (blue) and a BFV E2 from an isolate from a child in Papua New Guinea (red) by using the best-fit nucleotide substitution model in IQ-Tree version 1.5 (11). Bootstrap values were estimated by using 1,000 replicates; percentages are indicated on branch nodes. Inset table shows E2 nucleotide divergen

Figure 2. Phylogenetic relationships between 9 full-length (1,263 nt) Barmah Forest virus (BFV) envelope (E) protein genes. A) Maximum-likelihood phylogenetic tree constructed from 8 full-length Australia BFV E2 sequences (blue) and a BFV E2 sequences from an isolate from a child in Papua New Guinea (red) by using the best-fit nucleotide substitution model in IQ-Tree version 1.5 (11). Bootstrap values were estimated by using 1,000 replicates; percentages are indicated on branch nodes. Inset table shows E2 nucleotide divergence compared with that for prototype strain BH2193 (RefSeq accession no. NC_001786.1). Scale bar indicates nucleotide substitutions per site. B) Molecular clock analysis using the Bayesian Markov chain Monte Carlo method in BEAST (12) for 9 complete BFV E2 sequences (blue) spanning 1974–2016. Red indicates BFV from an isolate from a child in Papua New Guinea. Green lines indicate 95% CIs. Inset shows temporal analysis of root-to-tip linear regression by using TempEst version 1.5 (13). Slope, 1.98 × 10−4; X-intercept, 1914.2; correlation coefficient, 0.86; R2, 0.743; residual mean squared, 2.76 × 10−6. NSW, New South Wales; VIC, Victoria.

Main Article

References
  1. Mackenzie  JS, Lindsay  MD, Coelen  RJ, Broom  AK, Hall  RA, Smith  DW. Arboviruses causing human disease in the Australasian zoogeographic region. Arch Virol. 1994;136:44767. DOIPubMedGoogle Scholar
  2. Marshall  ID, Woodroofe  GM, Hirsch  S. Viruses recovered from mosquitoes and wildlife serum collected in the Murray Valley of South-eastern Australia, February 1974, during an epidemic of encephalitis. Aust J Exp Biol Med Sci. 1982;60:45770. DOIPubMedGoogle Scholar
  3. Doggett  SL, Russell  RC, Clancy  J, Haniotis  J, Cloonan  MJ. Barmah Forest virus epidemic on the south coast of New South Wales, Australia, 1994-1995: viruses, vectors, human cases, and environmental factors. J Med Entomol. 1999;36:8618. DOIPubMedGoogle Scholar
  4. Ryan  PA, Kay  BH. Vector competence of mosquitoes (Diptera: Culicidae) from Maroochy Shire, Australia, for Barmah Forest virus. J Med Entomol. 1999;36:85660. DOIPubMedGoogle Scholar
  5. Jeffery  JA, Ryan  PA, Lyons  SA, Kay  BH. Vector competence of Coquillettidia linealis (Skuse) (Diptera: Culicidae) for Ross River and Barmah Forest viruses. Aust J Entomol. 2002;41:33944. DOIGoogle Scholar
  6. Quinn  HE, Gatton  ML, Hall  G, Young  M, Ryan  PA. Analysis of Barmah Forest virus disease activity in Queensland, Australia, 1993-2003: identification of a large, isolated outbreak of disease. J Med Entomol. 2005;42:88290. DOIPubMedGoogle Scholar
  7. Ehlkes  L, Eastwood  K, Webb  C, Durrheim  D. Surveillance should be strengthened to improve epidemiological understandings of mosquito-borne Barmah Forest virus infection. Western Pac Surveill Response J. 2012;3:638. DOIPubMedGoogle Scholar
  8. Knope  K, Doggett  SL, Jansen  CC, Johansen  CA, Kurucz  N, Feldman  R, et al. Arboviral diseases and malaria in Australia, 2014–15. Annual report of the National Arbovirus and Malaria Advisory Committee. Communicable Diseases Intelligence (2018). 2019;Apr 15:43.
  9. Flexman  JP, Smith  DW, Mackenzie  JS, Fraser  JR, Bass  SP, Hueston  L, et al. A comparison of the diseases caused by Ross River virus and Barmah Forest virus. Med J Aust. 1998;169:15963. DOIPubMedGoogle Scholar
  10. Lee  E, Stocks  C, Lobigs  P, Hislop  A, Straub  J, Marshall  I, et al. Nucleotide sequence of the Barmah Forest virus genome. Virology. 1997;227:50914. DOIPubMedGoogle Scholar
  11. Nguyen  LT, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:26874. DOIPubMedGoogle Scholar
  12. Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:196973. DOIPubMedGoogle Scholar
  13. Rambaut  A, Lam  TT, Max Carvalho  L, Pybus  OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2:vew007. DOIPubMedGoogle Scholar
  14. Sanjuán  R, Domingo-Calap  P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73:443348. DOIPubMedGoogle Scholar

Main Article

Page created: November 18, 2019
Page updated: November 18, 2019
Page reviewed: November 18, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external