Management of Central Nervous System Infections, Vientiane, Laos, 2003–2011

Appendix

Laboratory Assays

Cerebral Spinal Fluid and Blood Parameters

Cerebral spinal fluid (CSF) opening pressure, using sterile spinal manometers (R55990; Rocket Medical plc, Washington, UK), and appearance were recorded. A CSF cell count was performed in an Improved Neubauer counting chamber, and slides (1) were prepared for Gram, Indian ink, and Giemsa stains using a cytospin (Shandon; Thermo Fisher Scientific, Waltham, USA). CSF glucose and protein were measured on a HumaStar 600 (HUMAN Diagnostics Worldwide, Wiesbaden, Germany) or Biochemistry Analyzer DS401 (SINNOWA, Nanjing, China) during working time and on Visual/70VB0357 (SECOMAM, Alès, France) during off duty hours, and lactate, using an Accutrend Plus System (Roche, Bâle, Switzerland). At the same time as the lumbar puncture, blood glucose was measured using ACCU-CHEK Advantage meters with Advantage II strips (Roche) from venous or capillary blood. On the same day, blood cultures (Pharmaceutical Factory no. 2, Vientiane, Lao PDR) (2), EDTA blood for complete blood count (CBC), and buffy coat and whole blood for serum and clot were drawn. CBCs were performed using HumaCount (5L, 60TS, or 80TS, HUMAN GmbH, Germany). Sera were sent to Bangkok (V-Diagnostic Center Co., Ltd) for additional biochemistry to measure C-reactive protein, creatinine, total bilirubin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase on an Olympus AU400 automated analyzer.

CSF Culture

Blood agar and chocolate agar plates and a MacConkey plate for children <1 year of age were inoculated with 1 drop of CSF pellet each. Bacteria grown from blood cultures (2) and CSF were identified using standard microbiological methods, including colony morphology, Gram stain, biochemical gallery assays, and APIs (bioMérieux, Lyon, France). Antibiotic disc diffusion susceptibility testing and Etests were performed according to the contemporary Clinical and Laboratory Standards Institute guidelines (2009). Gram, Auramine, *Ziehl–Neelsen*, and Indian ink stain microscopy were performed on the CSF pellet (1). Mahosot Hospital participates in the UK NEQAS scheme for General Bacteriology and Antimicrobial Susceptibility Testing and acid-fast bacilli microscopy.

Blood Culture Bottles

The blood culture bottles contain tryptic hydrolysate casein 1.7%, soy peptone 0.3%, sodium chloride 0.5%, potassium phosphate 0.25%, dextrose 0.25%, and sodium polyanetholsulfonate 0.025% in water for injection.

Cryptococcus spp. Detection

Cryptococcus spp. were detected by Indian ink staining of the CSF pellet for all patients and the *Cryptococcus* Antigen Latex Agglutination Test System (IMMY, Norman, USA) for patients with known or suspected HIV infection. CSF was cultured on Sabouraud agar if the Indian ink and/or cryptococcal antigen test were positive or if the patient was suspected to have cryptococcal meningitis, incubated in air at 30°C. Cultured *Cryptococcus* spp. were extracted for PCR and restriction fragment length polymorphism (RFLP) serotyping using the technique of Enache-Angoulvant et al. (*3*). Before PCR implementation (2008), colonies were identified using either the Crypto Check kit (Iatron Laboratories, Tokyo, Japan) or Canavanine-Glycine-Bromthymol Blue Agar (*4*).

M. tuberculosis Culture and Susceptibility Testing

In total, 200 μ L of CSF pellet was inoculated on Lowenstein-Jensen Medium Slants (BBL, catalogue no. 220908; BD, Franklin Lakes, USA) for *M. tuberculosis* culture for 8 weeks. Presumptive mycobacteria were sent to the International Organization for Migration in Bangkok for confirmation (Accuprobe MTB Assay; Gen-Probe Incorporated, San Diego, CA) and phenotypic susceptibility testing (BACTEC MGIT 960 System; BD, Franklin Lakes, USA) and to the Centre d'Infectiologie Christophe Mérieux du Laos, Vientiane, for rifampin and isoniazid resistance identification using GenoType MTBDRplus Assay (Hain Lifescience, Nehren, Germany), according to World Health Organization recommendations (*5*). A few colonies were recovered from positive Lowenstein-Jensen culture with an aseptic inoculation loop and suspended in 300 μ L of molecular grade water then incubated 20 minutes at 95°C in a

thermomixer (Eppendorf, Hamburg, Germany). After 5 minutes of centrifugation at $10,000 \times g$, 5 µL of supernatant was used to perform GenoType MTBDRplus PCR and reverse hybridization, following the manufacturer's instructions (Hain Lifescience, Nehren, Germany).

Leptospiral Culture

Culture of leptospires from blood clot was performed using 3 mL of Ellinghausen, McCullough, Johnson and Harris medium supplemented with 3% rabbit serum and 0.1% agarose in 5-mL sterile, plastic flat-based screw-cap tubes (Sterilin, Barloworld Scientific Ltd., UK). In total, 3 mL of Ellinghausen, McCullough, Johnson and Harris medium was added to the blood clot remaining after centrifugation of \approx 5 mL whole blood, and serum was removed using a sterile pipette and left overnight at room temperature. The next morning, the supernatant was transferred into a new 5-mL tube and incubated at Lao room temperature (\approx 25°C) for 12 weeks. Leptospires were identified by dark-field microscopy at \times 200 magnification (6).

Leptospiral Microscopic Agglutination Tests

Microscopic agglutination tests were performed for all admission sera and follow-up sera when available following the technique developed by Cole et al. (7). Two-fold serial dilutions of serum were prepared using phosphate-buffered saline (PBS). Antigens, *Leptospira* cultures adjusted to 100–200 organisms per high-power field (450×), were mixed with all serum dilutions in microplate wells and incubated at room temperature (25°C–30°C) for 2 hours. The plates were examined under microscope for agglutination. The endpoint in a positive test was the highest dilution in which at least 50% of the leptospires were agglutinated. Patients were regarded as positive if their paired sera demonstrated a 4-fold rise in antibody titer (*8*). Serovars included in the panel were Pomona, Hardjo, Tarassovi, Grippotyphosa, Celledoni, Copenhageni, Australis, Pyrogenes, Canicola, Hebdomadis, Mini, Saxkoebing, Sarmin, Autumnalis, Cynopteri, Ballum, Bataviae, Djasiman, Javanica, Panama, Shernani, Var 10, and Mwalok.

O. tsutsugamushi and Rickettsia spp. Culture

In total, 200 μ L of buffy coat was mixed with 3 mL of cell culture medium (RPMI with 10% fetal calf serum; GIBCO, Thermo Fisher Scientific); then, two 12.5-cm² flasks, one of confluent Vero cells and the other of confluent L929 cells, were inoculated with half of the buffy coat mixture each. The flasks were centrifuge for 30 min at 500 rpm then put for 2 hour in a CO₂ (5%) incubator at 35°C. Then, the culture media were removed and replaced by 5 mL of fresh

media. The day after, half of the culture media was removed and replaced by fresh media. Then, twice a week, culture media were completely replaced by fresh media. Four weeks after inoculation, the cultures were tested by immunofluorescence assay (IFA) to check for *Rickettsia* or *O. tsutsugamushi* growth. A small surface of cell layer was scraped and the recovered cells were washed 1 time with PBS then diluted 1:5 in PBS and loaded onto a slide. The slide was fixed in acetone for 10 minutes at –20°C. After drying, it was washed in PBS for 5 minutes. An antibody solution was prepared in PBS with 1:800 of each antibody (STG, SFG, TG) and 2% skim milk and loaded on the slide. The slide was incubated in a wet chamber at 35°C for 30 minutes. After 3 PBS washings, secondary antibody (1:50 FITC in PBS with 2% skim milk and 0.00125% Evans blue) was loaded on the slide; then, the slide was incubated in a wet chamber at 35°C for 30 minutes. After 3 PBS washings, the slide was read under ultraviolet light. The Evans blue stains the Vero and L929 cells red, and *Rickettsia* or *O. tsutsugamushi* green. In case of positive, IFAs with separate antibodies were performed for identification. In case of culture negative, flasks were incubated 8 additional weeks then rechecked by IFA.

IFA for Antibodies against Orientia tsutsugamushi and Rickettsia typhi

Acute and follow-up sera were tested by IFA to detect the presence of either IgM or IgG antibodies to *O. tsutsugamushi* (indicating scrub typhus infection) and to *R. typhi* (indicating murine typhus infection). In total, 4 μ L of serum was diluted to 1:25 in a microtitration plate with autoclaved PBS plus 3% skim milk powder. These sera were serially diluted 2-fold from 1:25–1:12,800. A 2- μ L aliquot of each serum dilution was added to IFA slides coated with antigen from *O. tsutsugamushi* strains (Karp, Kato, and Gilliam serotypes; Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia) and an *R. typhi* strain (Wilmington; Australian Rickettsial Reference Laboratory) then incubated in a moist chamber at 37°C for 1 hour. Slides were then washed 3 times (5 minutes/wash) with autoclaved PBS. After washing and drying, the slides were treated with specific fluorescein isothiocyanate–conjugated goat antihuman γ chain immunoglobulin (Sigma Aldrich, Munich, Germany), incubated for 30 minutes at 37°C, washed 3 times (5 min/wash) with autoclaved PBS, and mounted in buffered glycerol (90% [v/v] glycerol and 10% PBS). The IFA slides were read with an ECLIPSE E600 microscope (Nikon Co., Tokyo, Japan). The endpoint of each IFA titer was defined as the lowest serum concentration demonstrating definite fluorescence. Each slide contained positive and

negative controls, which were examined before interpreting the sample result (9). A positive result was defined as a 4-fold rise in IgM or IgG titer between admission and follow-up sera (10).

Viral ELISAs

Dengue virus and *Japanese encephalitis virus* (JEV) ELISA kits (Panbio Inc., Brisbane, Australia, now Alere Inc.) were used to detect *Dengue virus* NS1 (Dengue Early ELISA, E-DEN01P) and IgM against *Dengue virus* and JEV (Japanese Encephalitis/Dengue IgM combo ELISA, E-JED01C) in CSF, admission sera, and follow-up sera, following the manufacturer's instructions. The IgM combo ELISA permitted distinguishing anti-JEV IgM from anti-dengue IgM by testing both in the same sample on the same plate and comparing their results following an algorithm provided by the manufacturer. For CSF, the dilution 1:10 was used (*11*). Detection of anti-JEV IgM in a single sample of serum is considered as laboratory confirmation according to World Health Organization criteria. However, in this study, to be conservative and consistent with interpretation of other test results, a single detection of anti-JEV IgM in serum was not counted as confirming JEV central nervous system (CNS) infection.

Admission and follow-up sera were tested by ELISA for the detection of anti-measles and anti-mumps IgG and IgM using the Measles Enzygnost IgG and IgM kits and Mumps Enzygnost IgG and IgM kits (Dade Behring, Deerfield, IL, USA). If serum was positive, the corresponding CSF, when available, was tested for anti-measles or anti-mumps virus IgM.

Virus Isolation in Cell Culture

A cell culture facility was not available at the beginning of the study, and different cells were made available over time. For patients 357-1,073, supernatant after CSF centrifugation $(450 \times \text{g} \text{ for } 20 \text{ min})$ was inoculated on Vero cell, and for patients 897-1,073, admission serum was also inoculated on Vero cells. For patients 967-1,073 the BGM cell line was used for CSF and serum inoculation.

In a Biosafety level 3 laboratory, 200 μ L of patients' samples were inoculated onto confluent cells in a 12-well plate format. After 1 week at 37°C in a 5% CO₂ incubator, cells were scraped and 0.2 mL was passaged onto a fresh 12-well plate. In case of cytopathic effect, cells were scraped, and 1 mL was passaged onto a fresh 25-cm² flask. Isolated viruses were identified by specific real-time PCR after nucleic acid extraction using QIAamp MinElute Virus Spin Kit (QIAGEN, Hilden, Germany).

Molecular Assays

Nucleic Acid Extraction

DNA extraction from 200 μ L of pellet after CSF centrifugation (450 × g for 20 min) was performed by using the QIAamp DNA Mini kit (QIAGEN) (*12*) with the modification that lysozyme (5 μ L at a concentration of 10 mg/mL) and mutanolysin (5 μ L at a concentration of 10 mg/mL) (Sigma Aldrich) were added during a 30-minute lysis step at 37°C, as described by Moore et al. (*13*). DNA was eluted in 80 μ L of QIAGEN elution buffer.

EDTA buffy coat samples (200 μ L) were extracted with QIAamp DNA Mini kits (QIAGEN), according to the manufacturer's instructions, with the only exception of an extended lysis step from 10 min–1 h at 56°C. DNA was eluted in a final volume of 100 μ L.

Cryptoccocus spp. culture isolates were extracted using QIAamp DNA Mini kit (QIAGEN) using the protocol for bacterial cultures, with an additional lysis step, $10 \,\mu$ L of lyticase (10 mg/mL), added to the ATL buffer and incubated at 37°C for 30 minutes, before the addition of proteinase K.

Viral Nucleic Acid Extraction

For viral RNA and DNA, 200 μ L of serum on admission and 200 μ L of CSF were extracted with EZ1 Virus Mini Kit v2.0, using a BioRobot EZ1 Workstation (QIAGEN), by following the manufacturer's instructions. The elution volume was 90 μ L. A fixed amount of RNA and DNA bacteriophages (MS2 and T4, respectively) was added to all samples before extraction to be used as internal controls as previously described (*14*).

PCR Analysis

All sequences of primers and probes are displayed in Appendix Table 18.

Cryptococcus Typing PCR

In total, 5 μ L of DNA from *Cryptococcus* culture were submitted to conventional PCR targeting *CAP59* gene as described by Enache-Angoulvant et al. (*3*), in a 50- μ L final volume with 6 mmol/L MgCl₂, 200 μ M of dNTPs, 120 nmol/L of each primer, 1 U of AmpliTaq Gold DNA Polymerase (Applied Biosystems, Thermo Fisher Scientific). The PCR thermal profile was 95°C for 10 min and 35 cycles of 95°C for 30 sec, 58°C for 30 sec, and 72°C for 2 min. In total, 10 μ L of PCR product were then submitted to RFLP using *Age1-HF* (0.2 U), *BsmFI* (0.05 U), or

HpaII (0.2 U), enzymes from New England Biolabs (Ipswich, MA, USA), in a final volume of 20 µL with 2 µg of bovine serum albumin incubated 1 hour at 65°C for *BSmFI*, 1 hour at 37°C for *Age1-HF*, and 1 hour at 37°C for *HpaII*. Amplification of *Cryptococcus neoformans* var. *neoformans* is cut only by *HpaII*, *C. neoformans* var. *grubii* only by *BSmFI*, and *Cryptococcus gattii* by *Age1-HF* and *HpaII*. Restriction fragments were checked on a 3% agarose gel. For quality control, *C. neoformans* var. *grubii*, *C. gattii* (the prominent pathogenic cryptococci in southeast Asia), as well as no-template controls were included in every PCR and RFLP run.

Leptospira PCR

The hydrolysis probe real-time quantitative PCR (qPCR) developed by Thaipadungpanit et al. (15), targeting rrs gene, was used to detect *Leptospira* spp. in buffy coat and CSF. The assay was optimized for use in a RotorGene machine (QIAGEN) using the Platinum Taq DNA Polymerase kit (Invitrogen, Thermo Fisher Scientific) in a final volume of 20 μ L with 200 μ M of dNTPs, 250 nmol/L of forward primer, 500 nmol/L of reverse primer, 50 nmol/L of probe, 1 U of Taq, and 5 μ L of DNA. The qPCR thermal profile was 50°C for 2 min, 95°C for 8 min, and 45 cycles of 95°C for 15 sec and 60°C for 1 min. Positives were confirmed by sequencing.

PCR for Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus suis

DNA extracted from CSF was tested for *S. pneumoniae*, *S. suis*, *H. influenzae*, and *N. meningitidis* by using 4 simplex hydrolysis probe qPCRs previously described (*16–18*). The primer and probe conditions were optimized to be used with AmpliTaq Gold DNA Polymerase (Applied Biosystems, Thermo Fisher Scientific) and a RotorGene machine (QIAGEN). The final volume of reaction mixes was 25 μ L, containing 200 μ M of dNTPs; 1 U of Taq; 5 mmol/L of MgCl₂; 300 nmol/L of each primer and 100 nmol/L of probe for *H. influenzae*, 200 nmol/L of each primer and 100 nmol/L of each primer and 25 nmol/L of each primer and 400 nmol/L of each primer and 100 nmol/L of each primer and 25 nmol/L of each primer and 400 nmol/L of each primer and 100 nmol/L of probe for *S. suis*; and 3 μ L of DNA. The thermal cycling program used was 95°C for 10 min followed by 40 cycles of 95°C for 15 sec and 60°C for 60 sec.

S. pneumoniae typing

Positive samples for *S. pneumoniae* were submitted to additional hydrolysis probe qPCRs for serotying as developed by Moore et al. (*13*); 3 μ L of DNA was used for each qPCR. In total,

12 primer pairs and locked nucleic acid probes were designed to target the *cps* gene of 18 serotypes and were used in 3 multiplex and a simplex qPCR: serotypes 1, 3, 4, and 5 in multiplex 1; serotypes 6A/B, 7A/F, 9A/L/N/V, and 14 in multiplex 2; serotypes 18B/C, 19F, and 23F in multiplex 3; and serotype 19A in the simplex qPCR. All PCRs were optimized for the Corbett Rotor-Gene 6000 series (QIAGEN) in 25-µL final reaction volumes, with 5.5 mmol/L MgCl₂; 200 µM of dNTPs; 1 U AmpliTaq Gold DNA polymerase (Thermo Fisher Scientific); 240 nmol/L of each primer for multiplexes 1 and 2 and 300 nmol/L of each primer for multiplex 3 and serotype 19A; and 40 nmol/L of probe for serotypes 3 and 7A/F, 80 nmol/L of probe for other serotypes of multiplexes 1 and 2, 50 nmol/L of probe for serotype 19A, and 100 nmol/L of probe for other serotypes of multiplex 3 and 19A. The thermal cycling program used was 95°C for 10 min and 45 cycles of 95°C for 15 sec and 60°C for 1 min.

S. pneumonia isolates, when available, were sent to Murdoch Children Research Institute. Serotyping was performed by latex agglutination using a combination of commercial and inhouse typing reagents (*19*), and results were confirmed using the Quellung reaction.

H. influenzae typing

Positive CSF or isolates, when available, were sent to Haemophilus Reference Laboratory in the United Kingdom (Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, Colindale) for *H. influenzae* typing by hydrolysis probe qPCR based on Maaroufi et al. (*20*).

This consisted of a triplex hydrolysis probe qPCR for *ompP2* (detection of all *H. influenzae*), *bexA* (to detect the capsule operon in any capsulated strains), and *H. influenzae* specific target (based on the *H. influenzae* type b [Hib] specific region of the capsule operon) using 12.5 μ L of TaqMan universal master mix (Applied Biosystems, Thermo Fisher Scientific) and 1 μ L of DNA. The oligonucleotide concentrations used were 900 nmol/L for *ompP2* reverse primer and Hib forward and reverse primers, 300 nmol/L for *ompP2* forward primer and bexA forward and reverse primers, 50 nmol/L for *ompP2* probe, 500 nmol/L for *bexA* probe, and 250 nmol/L for Hib probe. The cycling parameters were 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 58°C for 1 min.

N. meningitidis typing

DNA from positive samples for *N. meningitidis* were sent to Meningococcal Reference Unit, Health Protection Agency, Manchester, UK, for typing by hydrolysis probe qPCR assay based on Meningococcal Reference Unit and Corless et al. methods (*17,21*). Modification has been made as improvement of *CtrA* System and the use of freeze-dried Taqman Quadruplex assay (*22*). The quadruplex contains primers against *N. meningitides* capsule transporter (*ctrA*), serogroup B sialyltransferase (*siaD_B*), *S. pneumoniae* pneumolysin (ply), and an internal control (*Cucurbita cv. Kurokawa amakuri* hydroxypyruvate reductase). The assay was prepared by Applied Biosystems (Thermo Fisher Scientific) in a lyophilized format, with primer and probe sequences provided by the MRU; the components of the master mix have not been disclosed by the company. Lyophilized reagents were rehydrated with 20 μ L of molecular-grade water, and then, 5 μ L of DNA was added. Amplification and detection was done on TaqMan 7500 (Applied Biosystems, Thermo Fisher Scientific) using fast cycling conditions (2 min at 95°C, 45 cycles of 95°C for 3 sec and 60°C for 30 sec).

Orientia tsutsugamushi PCR

This hydrolysis probe qPCR was based on that described by Jiang et al. (23) targeting the 47-kD gene. In total, 1 μ L of DNA extract from EDTA buffy coat and 5 μ L for CSF was used in a 25- μ L reaction with the Platinum Quantitative PCR SuperMix-UDG (Invitrogen) kit and 100 nmol/L of each primer and 200 nmol/L of probe. The thermal cycling program was 50°C for 2 min, 95°C for 2 min, and 45 cycles of 95°C for 15 sec and 60°C for 60 sec. All positive qPCRs were confirmed by sequencing (Macrogen Inc) or conventional PCR targeting 56 kDa as previously described (24).

Rickettsia genus and Rickettsia typhi PCR

This assay is a hydrolysis probe qPCR targeting the 17-kDa gene of *Rickettsia* spp. (23,25) using 1 μ L of DNA extracted from the EDTA buffy coat and 5 μ L for CSF, in a 25- μ L reaction volume. The Platinum Quantitative PCR SuperMix-UDG kit (Invitrogen, Thermo Fisher Scientific) was used in a final volume of 25 μ L, with 400 nmol/L of each primer and probe. The thermal cycling program was 50°C for 2 min, 95°C for 2 min, and 45 cycles of 95°C for 15 sec and 60°C for 30 sec.

Rickettsia genus–positive samples were confirmed as *Rickettsia typhi* using a confirmatory hydrolysis probe qPCR, targeting *ompB* gene, as described by Henry et al. (26). In total, 1 µL of buffy coat DNA and 5 µL of CSF DNA was used in a 25-µL reaction volume, with the Platinum Quantitative PCR SuperMix-UDG (Invitrogen, Thermo Fisher Scientific) and 400 nM of each primer and probe. The thermal cycling program was 50°C for 2 min, 95°C for 2 min, and 45 cycles of 95°C for 15 sec and 60°C for 30 sec. Repeatedly ompB-positive samples were processed for sequencing, following a conventional PCR targeting the 17-kDa gene, to identify the *Rickettsia* species. Conventional PCR was performed using Platinum Taq DNA polymerase (Invitrogen, Thermo Fisher Scientific), 300 nmol/L of each primer, forward 1 and reverse, 0.2 mmol/L of dNTPs, 2 mmol/L of MgCl₂, 1 U of Taq, and 1 µL of DNA in a final volume of 25 µL. The thermal cycling program was 94°C for 1 min and 34 cycles of 94°C for 30 sec, 55°C for 30 sec, and 68°C for 2 min, ending with 72°C for 7 min. A nested PCR is performed using the same conditions as the first PCR, with the same reveres primer and forward 2 primer on 1 μ L of the first PCR product. The PCR product of the nested PCR was sent to Macrogen Inc. (Seoul, South Korea) for purification and sequencing. Sequencing results were identified using NCBI nucleotide BLAST.

Viral PCR

Protocols for virus detection were transferred from Virology Laboratory at La Timone Hospital, Marseille, France, where they are used for routine diagnosis, to the microbiology laboratory of Mahosot Hospital.

Real-time PCRs for the detection of herpes simplex virus (HSV) 1 and 2 (27), human cytomegalovirus (HCMV) (28), varicella zoster virus (VZV) (29), *West Nile virus* (WNV) (30), *Tick-borne encephalitis virus* (TBEV) (31), *Enterovirus* (EV) (32), *Dengue virus* (33), Henipavirus (in house system), panflavivirus (34,35), measles virus (36), mumps virus (37), and influenza viruses A and B (38) were performed on CSF and admission serum for all patients when available.

The HSV1/2 system permits to detect HSV1 and HSV2 viruses. Samples positive by HSV1/2 PCR were submitted to 2 specific hydrolysis probe qPCRs for the detection of HSV1 and HSV2 (*39*). Detection of *Dengue virus* was done using a pan-dengue hydrolysis probe qPCR system designed to detect the 4 dengue serotypes. Positive samples were then submitted to the 4

hydrolysis probe qPCRs specific for the 4 serotypes. The hydrolysis probe qPCR used for the detection of EV is a pan-EV system that permits detection of all enteroviruses. Typing of EV-positive samples was performed following techniques developed by Nix et al. (40), see below, directly on patient sample extract or after inoculation on cell culture, when possible.

The primers and probe for detection of *Henipavirus* were designed using alignment of all Hendra and Nipah virus sequences available in GenBank.

PCR conditions were adapted to a standard 2-step protocol using TaqMan Reverse Transcription Reagents kit (Roche) for RNA viruses, followed by hydrolysis probe qPCR using Eurogentec Mastermix for probe assay (Eurogentec, Liège, Belgium) for HSV1/2, HSV1, HSV2, VZV, HCMV, EV, *Dengue virus*, *Dengue virus* 1, *Dengue virus* 2, *Dengue virus* 3, *Dengue virus* 4, WNV, TBEV, measles virus, mumps virus, influenza viruses A and B (until September 2009), and *Henipahvirus* detection. For RNA viruses, 10 μ L of viral nucleic acid extract was submitted to random reverse transcription (RT) using Transcription Reagents kit (Roche) and hexamer primers following the manufacturer's instructions in a final volume of 50 μ L. Simplex qPCR was then performed on 10 μ L of DNA (RT product for RNA viruses and extract for DNA viruses) using 25 μ L of qPCR MasterMix (Eurogentec, Liège, Belgium), 200 nmol/L of each primer, and 80 nmol/L of probe in a final volume of 50 μ L. qPCRs were performed using Mx3000P QPCR System (Agilent Technologies, Santa Clara, CA USA) with standard thermal cycling (50°C for 2 min, 95°C for 10 min, and 45 cycles of 95°C for 15 sec and 60°C for 1 min). WNV and TBEV primers and probes were used in a duplex qPCR following the same protocol. Any samples positive with a cycle quantification (Cq) <40 were repeated for confirmation.

Internal controls (MS2 and T4, RNA and DNA bacteriophages, respectively) were added to all specimens and systematically tested by hydrolysis probe qPCR (*14*). T4 and MS2 qPCRs were performed on 3 μ L of DNA (RT product for MS2, nucleic acid extract for T4) in a final volume of 15 μ L. In case of no detection of internal control, a new sample was extracted. In case of inhibition of the PCR, the extract sample was diluted 1:10 in AVE buffer (QIAGEN), and all qPCR reactions were repeated from this dilution.

Duplex hydrolysis probe qPCR was performed for the detection of influenza viruses A and B until September 2009 following the protocol above. *Influenzavirus* A qPCR was shown to not detect pandemic H1N1/09 (*41*), so primers alone were used in a SYBR Green RT-qPCR.

Since September 2009, influenza virus A and B primers were used to perform a duplex SYBR Green RT-qPCR using QuantiTect SYBR Green RT-PCR kit (QIAGEN) on 5 μ L of viral nucleic acid with 560 nmol/L of each primer in a final volume of 25 μ L. The thermal cycling program was 50°C for 30 min; 95°C for 15 min; and 45 cycles of 94°C for 15 sec, 60°C for 30 sec, and 72°C for 45 sec, ending with a melting curve from 60°C to 95°C. A positive sample has a peak around 79°C for *Influenzavirus B* and 80°C for *Influenzavirus A*.

A panflavivirus SYBR Green real-time RT-PCR that detects all viruses belonging to the genus *Flavivirus* (family *Flaviviridae*) was performed using QuantiTect SYBR Green RT-PCR kit (QIAGEN) on 5 μ L of viral nucleic acid with 550 nmol/L of each primer (forward 1 and reverse) in a final volume of 25 μ L. The thermal cycling program was 50°C for 30 min; 95°C for 15 min; and 45 cycles of 94°C for 15 sec, 50°C for 30 sec, and 72°C for 45 sec, ending with a melting curve from 60°C–95°C. A positive sample shows a peak around 80°C. Amplicons (270 bp in the NS5 gene) were sequenced (Macrogen Inc.) and the corresponding sequences were BLASTed on the NCBI Web site (blastn) for identification. All negative primary panflavivirus PCRs underwent a heminested PCR using 3 μ L of the primary PCR product, the same reverse primer, the forward 2 primer, and the same amplification protocol as in the primary PCR. Amplicons (\approx 162 bp) were sent for sequencing to Macrogen Inc. Then, the sequences were BLASTed (blastn, NCBI website) for identification.

Enterovirus typing

The typing of EV was performed using the protocol from the French reference center for Enterovirus based on Nix et al. (40). When available, clinical samples EV-positive by RT-qPCR were inoculated on MRC5, BGM, and MA104 cells in 12-well plates. In cases of cytopathic effect, cell supernatant was collected, extracted using EZ1 Virus Mini Kit v2.0 (QIAGEN), and submitted to pan-EV hydrolysis probe RT-qPCR using SuperScript III Platinum One-Step qRT-PCR kit (Invitrogen) with 200 nmol/L of each primer, 100 nmol/L of probe, and 5 μ L of extract in 25 μ L final volume. The thermal cycling program was 50°C for 15 min, 95°C for 2 min, and 45 cycles of 95°C for 15 sec and 60°C for 45 sec. The extracts from EV-positive cultures were submitted for RT-PCR using the Access RT-PCR system (Promega) with 1 μ mol/L of each forward primer and reverse primer 1 and 5 μ L of extract in a final volume of 50 μ L, following the manufacturer's instructions, with 42°C as the annealing temperature. The thermal cycling program was 45°C for 45 min; 94°C for 2 min; and 40 cycles of 94°C for 30 sec, 42°C for 1 min, and 68°C for 2 min, ending with 68°C for 7 min.

For patients, whose EV could not be isolated by cell culture, 5 μ L of extract underwent RT using 100 U of SuperScript III Reverse Trancriptase (Invitrogen), 10 mmol/L dithiothreitol, 0.1 mmol/L dNTP, 200 nmol/L of each RT primer (1–4), and 20 U RNaseOUT Recombinant Ribonuclease (Invitrogen) in a 10- μ L final volume. The RT thermal cycling program was 22°C for 10 min, 50°C for 50 min, and 95°C for 5 min. Primary PCR was performed on RT products using 2.5 U of AmpliTaq DNA Polymerase (Applied Biosystems), 1 μ mol/L of forward primers and reverse primer 1, and 0.2 mmol/L of dNTP in a 50- μ L final volume. The thermal cycling program used was 95°C for 5 min and 40 cycles of 95°C for 30 sec, 42°C for 50 sec, and 60°C for 50 sec.

The primary PCR with primers 1 produce a 990-bp amplicon. In case of negative primary PCR, a nested PCR was performed with 5 μ L of the primary PCR product using 2.5 U of FastStart Taq DNA Polymerase (Roche), 800 nmol/L of each primer 2, and 0.2 mmol/L dNTP in a 50- μ L final volume. The thermal cycling program was 95°C for 5 min and 40 cycles of 95°C for 30 sec, 60°C for 50 sec, and 72°C for 30 sec.

Nested PCR with primers 2 produce a 375-bp amplicon. Amplicons from primary or nested PCR were sent for sequencing to Macrogen Inc. Then, the sequences were BLASTed (blastn, NCBI website) for identification.

qPCR Interpretation

For quality control, positive and nontemplate controls were included in each run. A PCR was classified as positive if an amplification curve with a C_q value ≤ 40 was observed from the same sample in 2 separate PCR runs.

References

- Cheeseborough M. District laboratory practice in tropical countries. 2nd ed. Vol. 2. Cambridge: Cambridge University Press; 2006.
- Phetsouvanh R, Phongmany S, Soukaloun D, Rasachak B, Soukhaseum V, Soukhaseum S, et al. Causes of community-acquired bacteremia and patterns of antimicrobial resistance in Vientiane,

Laos. Am J Trop Med Hyg. 2006;75:978–85. <u>PubMed</u> http://dx.doi.org/10.4269/ajtmh.2006.75.978

- 3. Enache-Angoulvant A, Chandenier J, Symoens F, Lacube P, Bolognini J, Douchet C, et al. Molecular identification of *Cryptococcus neoformans* serotypes. J Clin Microbiol. 2007;45:1261–5. <u>PubMed</u> <u>http://dx.doi.org/10.1128/JCM.01839-06</u>
- Kwon-Chung KJ, Polacheck I, Bennett JE. Improved diagnostic medium for separation of *Cryptococcus neoformans* var. *neoformans* (serotypes A and D) and *Cryptococcus neoformans* var. *gattii* (serotypes B and C). J Clin Microbiol. 1982;15:535–7. <u>PubMed</u>
- 5. World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Policy statement. 2008 Jun 27 [cited 2018 Jun 6]. https://www.who.int/tb/features_archive/policy_statement.pdf
- Wuthiekanun V, Chierakul W, Limmathurotsakul D, Smythe LD, Symonds ML, Dohnt MF, et al. Optimization of culture of *Leptospira* from humans with leptospirosis. J Clin Microbiol. 2007;45:1363–5. PubMed http://dx.doi.org/10.1128/JCM.02430-06
- Cole JR Jr, Sulzer CR, Pursell AR. Improved microtechnique for the leptospiral microscopic agglutination test. Appl Microbiol. 1973;25:976–80. <u>PubMed</u>
- Syhavong B, Rasachack B, Smythe L, Rolain J-M, Roque-Afonso A-M, Jenjaroen K, et al. The infective causes of hepatitis and jaundice amongst hospitalised patients in Vientiane, Laos. Trans R Soc Trop Med Hyg. 2010;104:475–83. <u>PubMed http://dx.doi.org/10.1016/j.trstmh.2010.03.002</u>
- 9. Phetsouvanh R, Blacksell SD, Jenjaroen K, Day NPJ, Newton PN. Comparison of indirect immunofluorescence assays for diagnosis of scrub typhus and murine typhus using venous blood and finger prick filter paper blood spots. Am J Trop Med Hyg. 2009;80:837–40. <u>PubMed</u> http://dx.doi.org/10.4269/ajtmh.2009.80.837
- 10. Coleman RE, Sangkasuwan V, Suwanabun N, Eamsila C, Mungviriya S, Devine P, et al. Comparative evaluation of selected diagnostic assays for the detection of IgG and IgM antibody to *Orientia tsutsugamushi* in Thailand. Am J Trop Med Hyg. 2002;67:497–503. <u>PubMed http://dx.doi.org/10.4269/ajtmh.2002.67.497</u>
- 11. Moore CE, Blacksell SD, Taojaikong T, Jarman RG, Gibbons RV, Lee SJ, et al. A prospective assessment of the accuracy of commercial IgM ELISAs in diagnosis of Japanese encephalitis virus infections in patients with suspected central nervous system infections in Laos. Am J Trop Med Hyg. 2012;87:171–8. <u>PubMed http://dx.doi.org/10.4269/ajtmh.2012.11-0729</u>

- Ikejima H, Haranaga S, Takemura H, Kamo T, Takahashi Y, Friedman H, et al. PCR-based method for isolation and detection of *Chlamydia pneumoniae* DNA in cerebrospinal fluids. Clin Diagn Lab Immunol. 2001;8:499–502. <u>PubMed</u>
- 13. Moore CE, Sengduangphachanh A, Thaojaikong T, Sirisouk J, Foster D, Phetsouvanh R, et al. Enhanced determination of *Streptococcus pneumoniae* serotypes associated with invasive disease in Laos by using a real-time polymerase chain reaction serotyping assay with cerebrospinal fluid. Am J Trop Med Hyg. 2010;83:451–7. <u>PubMed http://dx.doi.org/10.4269/ajtmh.2010.10-0225</u>
- 14. Ninove L, Nougairede A, Gazin C, Thirion L, Delogu I, Zandotti C, et al. RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests. PLoS One. 2011;6:e16142. <u>PubMed</u> <u>http://dx.doi.org/10.1371/journal.pone.0016142</u>
- 15. Thaipadungpanit J, Chierakul W, Wuthiekanun V, Limmathurotsakul D, Amornchai P, Boonslip S, et al. Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and *lipL32* genes for human leptospirosis in Thailand: a case-control study. PLoS One. 2011;6:e16236. <u>PubMed http://dx.doi.org/10.1371/journal.pone.0016236</u>
- 16. Carvalho MG, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW, et al. Evaluation and improvement of real-time PCR assays targeting *lytA*, *ply*, and *psaA* genes for detection of pneumococcal DNA. J Clin Microbiol. 2007;45:2460–6. <u>PubMed</u> <u>http://dx.doi.org/10.1128/JCM.02498-06</u>
- 17. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. Simultaneous detection of *Neisseria meningitidis*, *Haemophilus influenzae*, and *Streptococcus pneumoniae* in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol. 2001;39:1553–8. <u>PubMed http://dx.doi.org/10.1128/JCM.39.4.1553-1558.2001</u>
- Mai NTH, Hoa NT, Nga TVT, Linh LD, Chau TTH, Sinh DX, et al. *Streptococcus suis* meningitis in adults in Vietnam. Clin Infect Dis. 2008;46:659–67. <u>PubMed http://dx.doi.org/10.1086/527385</u>
- Ortika BD, Habib M, Dunne EM, Porter BD, Satzke C. Production of latex agglutination reagents for pneumococcal serotyping. BMC Res Notes. 2013;6:49. <u>PubMed http://dx.doi.org/10.1186/1756-0500-6-49</u>
- 20. Maaroufi Y, De Bruyne J-M, Heymans C, Crokaert F. Real-time PCR for determining capsular serotypes of *Haemophilus influenzae*. J Clin Microbiol. 2007;45:2305–8. <u>PubMed</u> <u>http://dx.doi.org/10.1128/JCM.00102-07</u>

- 21. Gray SJ, Trotter CL, Ramsay ME, Guiver M, Fox AJ, Borrow R, et al.; Meningococcal Reference Unit. Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: contribution and experiences of the Meningococcal Reference Unit. J Med Microbiol. 2006;55:887–96. <u>PubMed http://dx.doi.org/10.1099/jmm.0.46288-0</u>
- 22. McHugh MP, Gray SJ, Kaczmarski EB, Guiver M. Reduced turnaround time and improved diagnosis of invasive serogroup B *Neisseria meningitidis* and *Streptococcus pneumoniae* infections using a lyophilized quadruplex quantitative PCR. J Med Microbiol. 2015;64:1321–8. <u>PubMed</u> http://dx.doi.org/10.1099/jmm.0.000154
- 23. Jiang J, Chan T-C, Temenak JJ, Dasch GA, Ching W-M, Richards AL. Development of a quantitative real-time polymerase chain reaction assay specific for *Orientia tsutsugamushi*. Am J Trop Med Hyg. 2004;70:351–6. PubMed http://dx.doi.org/10.4269/ajtmh.2004.70.351
- 24. Horinouchi H, Murai K, Okayama A, Nagatomo Y, Tachibana N, Tsubouchi H. Genotypic identification of *Rickettsia tsutsugamushi* by restriction fragment length polymorphism analysis of DNA amplified by the polymerase chain reaction. Am J Trop Med Hyg. 1996;54:647–51. <u>PubMed http://dx.doi.org/10.4269/ajtmh.1996.54.647</u>
- 25. Jiang J, Stromdahl EY, Richards AL. Detection of *Rickettsia parkeri* and *Candidatus* Rickettsia andeanae in *Amblyomma maculatum* Gulf Coast ticks collected from humans in the United States. Vector Borne Zoonotic Dis. 2012;12:175–82. <u>PubMed http://dx.doi.org/10.1089/vbz.2011.0614</u>
- 26. Henry KM, Jiang J, Rozmajzl PJ, Azad AF, Macaluso KR, Richards AL. Development of quantitative real-time PCR assays to detect *Rickettsia typhi* and *Rickettsia felis*, the causative agents of murine typhus and flea-borne spotted fever. Mol Cell Probes. 2007;21:17–23. <u>PubMed</u> <u>http://dx.doi.org/10.1016/j.mcp.2006.06.002</u>
- 27. Kessler HH, Mühlbauer G, Rinner B, Stelzl E, Berger A, Dörr HW, et al. Detection of herpes simplex virus DNA by real-time PCR. J Clin Microbiol. 2000;38:2638–42. PubMed
- Griscelli F, Barrois M, Chauvin S, Lastere S, Bellet D, Bourhis JH. Quantification of human cytomegalovirus DNA in bone marrow transplant recipients by real-time PCR. J Clin Microbiol. 2001;39:4362–9. <u>PubMed http://dx.doi.org/10.1128/JCM.39.12.4362-4369.2001</u>
- 29. Bousbia S, Papazian L, Saux P, Forel JM, Auffray J-P, Martin C, et al. Repertoire of intensive care unit pneumonia microbiota. PLoS One. 2012;7:e32486. <u>PubMed</u> <u>http://dx.doi.org/10.1371/journal.pone.0032486</u>

- 30. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, et al. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol. 2000;38:4066–71. <u>PubMed</u>
- 31. Kaptein SJF, De Burghgraeve T, Froeyen M, Pastorino B, Alen MMF, Mondotte JA, et al. A derivate of the antibiotic doxorubicin is a selective inhibitor of dengue and yellow fever virus replication in vitro. Antimicrob Agents Chemother. 2010;54:5269–80. <u>PubMed</u> http://dx.doi.org/10.1128/AAC.00686-10
- 32. Watkins-Riedel T, Woegerbauer M, Hollemann D, Hufnagl P. Rapid diagnosis of enterovirus infections by real-time PCR on the LightCycler using the TaqMan format. Diagn Microbiol Infect Dis. 2002;42:99–105. <u>PubMed http://dx.doi.org/10.1016/S0732-8893(01)00330-3</u>
- 33. Leparc-Goffart I, Baragatti M, Temmam S, Tuiskunen A, Moureau G, Charrel R, et al. Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses. J Clin Virol. 2009;45:61–6. <u>PubMed http://dx.doi.org/10.1016/j.jcv.2009.02.010</u>
- 34. Moureau G, Temmam S, Gonzalez JP, Charrel RN, Grard G, de Lamballerie X. A real-time RT-PCR method for the universal detection and identification of flaviviruses. Vector Borne Zoonotic Dis. 2007;7:467–77. <u>PubMed http://dx.doi.org/10.1089/vbz.2007.0206</u>
- 35. Moureau G, Ninove L, Izri A, Cook S, De Lamballerie X, Charrel RN. Flavivirus RNA in phlebotomine sandflies. Vector Borne Zoonotic Dis. 2010;10:195–7. <u>PubMed</u> <u>http://dx.doi.org/10.1089/vbz.2008.0216</u>
- 36. Hummel KB, Lowe L, Bellini WJ, Rota PA. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods. 2006;132:166–73. PubMed http://dx.doi.org/10.1016/j.jviromet.2005.10.006
- Uchida K, Shinohara M, Shimada S, Segawa Y, Doi R, Gotoh A, et al. Rapid and sensitive detection of mumps virus RNA directly from clinical samples by real-time PCR. J Med Virol. 2005;75:470–4. PubMed http://dx.doi.org/10.1002/jmv.20291
- 38. van Elden LJ, Nijhuis M, Schipper P, Schuurman R, van Loon AM. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR. J Clin Microbiol. 2001;39:196–200. <u>PubMed http://dx.doi.org/10.1128/JCM.39.1.196-200.2001</u>
- 39. Weidmann M, Meyer-König U, Hufert FT. Rapid detection of herpes simplex virus and varicellazoster virus infections by real-time PCR. J Clin Microbiol. 2003;41:1565–8. <u>PubMed</u> <u>http://dx.doi.org/10.1128/JCM.41.4.1565-1568.2003</u>

- 40. Nix WA, Oberste MS, Pallansch MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol. 2006;44:2698–704. <u>PubMed http://dx.doi.org/10.1128/JCM.00542-06</u>
- Zane RS, Daneshi A, Jenkins HA. Positional envelope as a response parameter in caloric testing. Acta Otolaryngol. 1991;111:639–45. <u>PubMed http://dx.doi.org/10.3109/00016489109138394</u>
- 42. Olsen SJ, Campbell AP, Supawat K, Liamsuwan S, Chotpitayasunondh T, Laptikulthum S, et al.; Thailand Encephalitis Surveillance Team. Infectious causes of encephalitis and meningoencephalitis in Thailand, 2003–2005. Emerg Infect Dis. 2015;21:280–9. <u>PubMed</u> <u>http://dx.doi.org/10.3201/eid2102.140291</u>
- 43. Ai J, Xie Z, Liu G, Chen Z, Yang Y, Li Y, et al. Etiology and prognosis of acute viral encephalitis and meningitis in Chinese children: a multicentre prospective study. BMC Infect Dis. 2017;17:494.
 <u>PubMed http://dx.doi.org/10.1186/s12879-017-2572-9</u>
- 44. Xie Y, Tan Y, Chongsuvivatwong V, Wu X, Bi F, Hadler SC, et al. A population-based acute meningitis and encephalitis syndromes surveillance in Guangxi, China, May 2007-June 2012. PLoS One. 2015;10:e0144366. <u>PubMed http://dx.doi.org/10.1371/journal.pone.0144366</u>
- 45. Tan V, Thai H, Phu NH, Nghia HDT, Chuong LV, Sinh DX, et al. Viral aetiology of central nervous system infections in adults admitted to a tertiary referral hospital in southern Vietnam over 12 years. PLoS Negl Trop Dis. 2014;8:e3127. <u>PubMed</u> <u>http://dx.doi.org/10.1371/journal.pntd.0003127</u>
- 46. Ho Dang Trung N, Le Thi Phuong T, Wolbers M, Nguyen Van Minh H, Nguyen Thanh V, Van MP, et al.; VIZIONS CNS Infection Network. Aetiologies of central nervous system infection in Viet Nam: a prospective provincial hospital-based descriptive surveillance study. PLoS One. 2012;7:e37825. <u>PubMed http://dx.doi.org/10.1371/journal.pone.0037825</u>
- Taylor WR, Nguyen K, Nguyen D, Nguyen H, Horby P, Nguyen HL, et al. The spectrum of central nervous system infections in an adult referral hospital in Hanoi, Vietnam. PLoS One. 2012;7:e42099. <u>PubMed http://dx.doi.org/10.1371/journal.pone.0042099</u>
- 48. Wertheim HFL, Nguyen HN, Taylor W, Lien TTM, Ngo HT, Nguyen TQ, et al. *Streptococcus suis*, an important cause of adult bacterial meningitis in northern Vietnam. PLoS One. 2009;4:e5973. <u>PubMed http://dx.doi.org/10.1371/journal.pone.0005973</u>

- 49. Turner P, Suy K, Tan LV, Sar P, Miliya T, Hong NTT, et al. The aetiologies of central nervous system infections in hospitalised Cambodian children. BMC Infect Dis. 2017;17:806. <u>PubMed</u> <u>http://dx.doi.org/10.1186/s12879-017-2915-6</u>
- 50. Horwood PF, Duong V, Laurent D, Mey C, Sothy H, Santy K, et al. Aetiology of acute meningoencephalitis in Cambodian children, 2010–2013. Emerg Microbes Infect. 2017;6:e35. <u>PubMed http://dx.doi.org/10.1038/emi.2017.15</u>
- 51. Touch S, Hills S, Sokhal B, Samnang C, Sovann L, Khieu V, et al. Epidemiology and burden of disease from Japanese encephalitis in Cambodia: results from two years of sentinel surveillance. Trop Med Int Health. 2009;14:1365–73. <u>PubMed http://dx.doi.org/10.1111/j.1365-3156.2009.02380.x</u>
- 52. Srey VH, Sadones H, Ong S, Mam M, Yim C, Sor S, et al. Etiology of encephalitis syndrome among hospitalized children and adults in Takeo, Cambodia, 1999-2000. Am J Trop Med Hyg. 2002;66:200–7. <u>PubMed http://dx.doi.org/10.4269/ajtmh.2002.66.200</u>
- 53. Han S-H, Choi H-Y, Kim J-M, Park K-R, Youn YC, Shin H-W. Etiology of aseptic meningitis and clinical characteristics in immune-competent adults. J Med Virol. 2016;88:175–9. <u>PubMed</u> <u>http://dx.doi.org/10.1002/jmv.24316</u>
- 54. Phommasone K, Paris DH, Anantatat T, Castonguay-Vanier J, Keomany S, Souvannasing P, et al. Concurrent Infection with murine typhus and scrub typhus in southern Laos—the mixed and the unmixed. PLoS Negl Trop Dis. 2013;7:e2163. <u>PubMed</u> <u>http://dx.doi.org/10.1371/journal.pntd.0002163</u>
- 55. Ming DKY, Rattanavong S, Bharucha T, Sengvilaipaseuth O, Dubot-Pérès A, Newton PN, et al. Angiostrongylus cantonensis DNA in cerebrospinal fluid of persons with eosinophilic meningitis, Laos. Emerg Infect Dis. 2017;23:2112–3. <u>PubMed http://dx.doi.org/10.3201/eid2312.171107</u>
- 56. World Health Organization. Recommended standards for surveillance of selected vaccine-preventable diseases. 2003 May [cited 2018 Jun 6]. http://www.measlesrubellainitiative.org/wpcontent/uploads/2013/06/WHO-surveillance-standard.pdf
- 57. Polage CR, Cohen SH. State-of-the-art microbiologic testing for community-acquired meningitis and encephalitis. J Clin Microbiol. 2016;54:1197–202. <u>PubMed</u> <u>http://dx.doi.org/10.1128/JCM.00289-16</u>
- 58. Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, et al.; International Encephalitis Consortium. Case definitions, diagnostic algorithms, and priorities in encephalitis:

consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013;57:1114–28. <u>PubMed http://dx.doi.org/10.1093/cid/cit458</u>

- 59. Tarantola A, Goutard F, Newton P, de Lamballerie X, Lortholary O, Cappelle J, et al. Estimating the burden of Japanese encephalitis virus and other encephalitides in countries of the mekong region. PLoS Negl Trop Dis. 2014;8:e2533. <u>PubMed http://dx.doi.org/10.1371/journal.pntd.0002533</u>
- 60. Glaser CA, Gilliam S, Schnurr D, Forghani B, Honarmand S, Khetsuriani N, et al. In search of encephalitis etiologies: diagnostic challenges in the California Encephalitis Project, 1998—2000. Clin Infect Dis. 2003;36:731–42. <u>PubMed http://dx.doi.org/10.1086/367841</u>
- 61. Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen CK, et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis. 2006;43:1565–77. <u>PubMed http://dx.doi.org/10.1086/509330</u>
- 62. Kolski H, Ford-Jones EL, Richardson S, Petric M, Nelson S, Jamieson F, et al. Etiology of acute childhood encephalitis at The Hospital for Sick Children, Toronto, 1994–1995. Clin Infect Dis. 1998;26:398–409. <u>PubMed http://dx.doi.org/10.1086/516301</u>
- 63. Kupila L, Vuorinen T, Vainionpää R, Hukkanen V, Marttila RJ, Kotilainen P. Etiology of aseptic meningitis and encephalitis in an adult population. Neurology. 2006;66:75–80. <u>PubMed</u> http://dx.doi.org/10.1212/01.wnl.0000191407.81333.00
- 64. Mailles A, Stahl J-P; Steering Committee and Investigators Group. Infectious encephalitis in France in 2007: a national prospective study. Clin Infect Dis. 2009;49:1838–47. <u>PubMed</u> <u>http://dx.doi.org/10.1086/648419</u>
- 65. Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, Morgan D, et al.; UK Health Protection Agency Aetiology of Encephalitis Study Group. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis. 2010;10:835–44. <u>PubMed http://dx.doi.org/10.1016/S1473-3099(10)70222-X</u>

		logies of central nervous systen			Patients with confirmed	Main	
				No.	diagnosis,	etiologies,	Mortality
Study	Location	Study design	Clinical syndrome†	cases	no. (%)	<u>></u> 2%, (%)	no. (%)
Olsen et al. 2015 (<i>4</i> 2)	Thailand	Prospective study in 7 hospitals in Thailand, 2003– 2005	Acute encephalitis syndrome	149	54 (36)	JEV (14), EV (4), O. tsu (4), Crypto (2), H. inf (2), S. pneu (2), EBV (2), M. pneu (2), Spot fev (2)	15 (10)
Ai et al. 2017 (<i>43</i>)	China	Multicenter prospective study in 5 hospitals, Beijing, Shandong, Shanxi, Gansu and Jiangsu province, from June 2009 to October 2012	Viral encephalitis and viral meningitis	546	259 (47.4)	EV (15.4), HSV1 (6.6), Mu (4), VZV (2.6)	2 (0.4)
Xie et al. 2015 (<i>44</i>)	China	Prospective study in 12 hospitals in China, 2007– 2012	Acute meningitis and encephalitis	2,382	538 (<50)	EV (19), JEV (6), Mu (14), Bact (4), Me (3), HSV (3), Crypto (3)	75 (3)
Tan et al. 2014 (<i>45</i>)	Vietnam	Prospective study at Hospital for Tropical Diseases in Ho Chi Minh City, 1996–2008	CNS infections of viral origin suspected by physician, HIV negative, no evidence of purulent bacterial, eosinophilic, cryptococcal, or tuberculous meningitis by CSF cell count, culture, or microscopy	291	93 (32)	JEV (12), DENV (6.5), HSV (6.5), EV (3)	28 (10)
Ho Dang Trung et al. 2012 (<i>46</i>)	Vietnam	Prospective study in 13 hospitals, 2007 2010	Viral encephalitis and meningitis, bacterial meningitis	1,241 ‡	640 (52)	JEV (12), S. suis (12), S. pneu (6), EV (5), TB (4), H. inf (3), DENV (3), HSV (3),	115 (9)
Taylor et al. 2012 (<i>47</i>)	Vietnam	Prospective study from May 2007 to December 2008 at the National Hospital for Tropical Diseases (NHTD) in Hanoi	CNS infection upon judgment of admitting doctor	352	95 (27)	S. suis (14), HSV (3), TB (3), N. men (2)	21 (8)
Wertheim et al. 2009 (<i>48</i>)	Vietnam	Prospective study in adults at National Institute of Infectious and Tropical Diseases, Hanoi, January 2007 to December 2007	Suspected meningitis	562	68 (12)	S <i>. suis</i> (9), Crypto (2)	
Turner et al. 2017 (<i>49</i>)	Cambodia	Prospective study from September 2014 to October 2015 at Angkor Hospital associated Satellite Clinic (SC) at Sot Nikom District referral Hospital in Siem Reap for Children	Suspected CNS infection	284	55 (19.4)	EV (7.4), JEV (6.0), S. pneu (2.5).	(2.5)
Horwood et al. 2017 (<i>50</i>)	Cambodia	Prospective study from July 2010 to December 2013 at Kantha Bopha and Jayavarman VII, children hospitals in Phnom Penh and Siem Reap respectively	Acute meningoencephalitis	1160	406 (35)	JEV (24), O. tsu (5), DENV (5), EV (4), CHIKV (2), S. pneu (2)	
Touch et al. 2009 (<i>51</i>)	Cambodia	JEV sentinel surveillance in children in 6 hospitals, 2006 2008	Meningoencephalitis	586	110 (19)	JEV (19)	6 (10)
Srey et al. 2002 (52)	Cambodia	Prospective study in Takeo Provincial Hospital, October 1999 September 2000	Encephalitis syndrome	99	42 (42)	JEV (16), Crypto (7), TB (5), DENV (5), H. inf (3), Strep (2)	

				No.	Patients with confirmed diagnosis,	Main etiologies,	Mortality,
Study	Location	Study design	Clinical syndrome†	cases	no. (%)	<u>></u> 2%, (%)	no. (%)
Han et al. 2016 (53)	Korea	Retrospective study in hospitalized adults, March	Aseptic meningitis	177	96 (54)	EV (38), VZV (14)	· · ·
. ,		2008 to Feb 2013				. ,	

*In September 2016 we reviewed articles published in English in the Medline database in the past 15 years using the terms "encephalitis," In September 2016 we reviewed articles published in English in the Medline database in the past 15 years using the terms "encephalitis," "meningitis," "CNS syndrome" "CNS infection" "central nervous system syndrome" "central nervous system infection," with adding the terms "asia," or "south-east asia." Bact, bacteria; CHIKV, *Chikungunya virus*; Crypto, *Cryptococcus*; DENV, *Dengue virus*; EBV, Epstein-Barr virus; EV, *Enterovirus*, H. inf, *H. influenzae*; JEV, *Japanese encephalitis virus*; List, *Listeria monocytogenes*; Me, measles virus; M. pneu, *M. pneumoniae*; Mu, mumps virus; N. men, *N. meningitidis*; O. tsu, O. *tsutsugamushi*; S. pneu, *S. pneumoniae*; Spot fev, Spotted fever; TB, *M. tuberculosis*; TBE, *Tick-borne encephalitis virus*; Strep, *Streptococcus*; VZV, varicella zoster virus. †Criteria for the definition of clinical syndromes are presented in Appendix Table 17, the article with no clear criteria for clinical syndromes definition are not in the Appendix Table 17.

To the actinition of clinical syndromes are presented in Appendix Table 17, the article with no clear criteria for clinical syndromes de are not in the Appendix Table 17. ‡Contrary to the other studies, after the inclusion of 1,645 patients with CNS presentation, 404 patients were excluded for unsuspected CNS infection.

Appendix Table 2. Demographic, clinical, blood and CSF parameters data at admission of all patients recruited in the	e study, with
confirmed etiology, viral or bacterial infections*	

		Age group		Etiology				
					None			
	All, n =	<15 y, n =	<u>></u> 15 y, n =	Confirmed, n		Viral, n =	Bacterial, n	
Characteristic or parameter	1,065	358	707	= 450	= 615	172	= 175	
Demographic								
Male sex	666 (62.5)	207 (57.8)	459 (64.9)	288 (64.0)	378 (61.5)	111 (64.5)	117 (66.9)	
Age, y, median (IQR)	23 (8–38)	3 (0.41–8)	32 (24–47)	23 (10–38)	24 (6–40)	16 (7–28)	23.0 (9–45)	
Age group								
<1 mo	23 (2.2)	23 (6.4)	NA	4 (0.9)	19 (3.1)	2 (1.2)	2 (1.1)	
1 mo–<1 y	112 (10.5)	112 (31.3)	NA	35 (7.8)	77 (12.5)	9 (5.2)	21 (12.0)	
1–<5 y	73 (6.9)	73 (20.4)	NA	27 (6.0)	46 (7.5)	21 (12.2)	6 (3.4)	
5–<15 y	150 (14.1)	150 (41.9)	NA	72 (16.0)	78 (12.7)	45 (26.2)	25 (14.3)	
<u>></u> 15 y	707 (66.4)	NA	707 (100)	312 (69.3)	395 (64.2)	95 (55.2)	121 (69.1)	
Distance from hospital, n	25 (7–82)	29 (9–84)	20 (6-80)	28 (8–78)	23 (7–88)	39 (8–133)	27 (9–56)	
= 1,061, km, median (IQR)								
Population density per	411 (92–	282 (73–	451 (100–	408 (92-	411 (91–	433 (70–	334 (92–	
km²,† n = 1,051, median	1,949)	1,567)	2,027)	1,686)	2,027)	1,821)	1,285)	
(IQR)								
Occupation, $n = 603$								
Farmer	NA	NA	107 (17.7)	54 (20.2)	53 (15.8)	14 (17.7)	27 (27.3)	
Work indoors	NA	NA	80 (13.3)	32 (12.0)	48 (14.3)	10 (12.7)	10 (10.1)	
Work outdoors	NA	NA	151 (25.0)	71 (26.6)	80 (23.8)	16 (20.3)	23 (23.2)	
Student	NA	NA	75 (12.4)	39 (14.6)	36 (10.7)	20 (25.3)	14 (14.1)	
Other	NA	NA	190 (31.5)	71 (26.6)	119 (35.4)	18 (24.1)	25 (25.3)	
History								
HIV seropositive, n = 703	119 (16.9)	1 (0.4)	118 (24.8)	75 (27.1)	44 (10.3)	8 (8.0)	6 (6.2)	
Diabetic, $n = 850$	24 (2.8)	0	24 (4.2)	12 (3.5)	12 (2.4)	1 (0.8)	10 (7.5)	
Tuberculosis, n = 734	35 (4.8)	1 (0.4)	34 (7.0)	18 (6.2)	17 (3.8)	3 (2.7)	2 (1.9)	
Antibiotic use before	590 (61.9)	238 (71.9)	352 (56.6)	252 (64.0)	338 (60.5)	109 (69.9)	100 (62.5)	
lumbar puncture,‡ n = 953								
Steroid use before LP, n	58 (6.8)	26 (9.3)	32 (5.6)	21 (6.2)	37 (7.2)	9 (6.9)	7 (5.3)	
= 854								
Alcohol excess,§ n = 591	NA		249 (42.1)	106 (40.8)	143 (43.2)	29 (36.7)	44 (43.1)	
Pet at home (dog cat), n =	523 (89.4)	172 (89.1)	351 (89.5)	218 (89.0)	305 (89.7)	81 (91.0)	90 (88.2)	
585								
Poultry at home, n = 539	481 (89.2)	174 (89.2)	307 (89.2)	203 (88.7)	278 (89.7)	86 (89.6)	81 (88.0)	
Pigs at home, n = 416	346 (83.2)	102 (81.0)	244 (84.1)	163 (84.5)	183 (82.1)	70 (86.4)	54 (81.8)	
Signs and symptoms			. /		. ,			
Days of fever at	4 (2–8)	4 (2–6)	5 (2–10)	5 (3–10)	4 (1–7)	5 (3–7)	5 (3–8)	
admission, $n = 1,058$,	· · /	. ,	. ,	. ,		. ,	. ,	
median (IQR)								
Fever, n = 1,059	962 (90.8)	340 (95.2)	622 (88.6)	425 (94.9)	537 (87.9)	162 (95.3)	171 (97.7)	
	· - /	· /		· · · /		(-)	. ,	

	Age group			Etiology				
	All n –	<15 v n -	>15 v n −	Confirmed, n	None confirmed, n	Viral, n =	Bactorial n	
Characteristic or parameter	All, n = 1,065	<15 y, n = 358	<u>></u> 15 y, n = 707	= 450	= 615	172	Bacterial, n = 175	
Headache, n = 893	787 (88.1)	155 (83.3)	632 (89.4)	369 (92.5)	418 (84.6)	139 (90.9)	135 (91.2)	
Hearing loss, P n = 893	51 (5.7)	10 (5.4)	41 (5.8)	20 (5.0)	31 (6.3)	8 (5.2)	7 (4.7)	
Dysuria, 🖡 n = 891	28 (3.1)	4 (2.2)	24 (3.4)	10 (2.5)	18 (3.7)	3 (2.0)	3 (2.0)	
Visual loss, P n = 885	66 (7.5)	14 (7.7)	52 (7.4)	23 (5.8)	43 (8.8)	11 (7.2)	5 (3.4)	
Diplopia, I n = 889	36 (4.1)	4 (2.2)	32 (4.5)	15 (3.4)	21 (4.3)	6 (4.0)	6 (4.1)	
Photophobia, n = 850	52 (5.8)	14 (7.4)	38 (5.4)	23 (5.8)	29 (5.9)	7 (4.6)	10 (6.8)	
Focal neurologic signs, n	22# (2.3)	5 (1.6)	17 (2.7)	8 (2.1)	14 (2.5)	1 (0.7)	6 (4.1)	
= 939								
Neck stiffness, $n = 1,064$	683 (64.2)	245 (68.4)	438 (62.0)	316 (70.2)	367 (59.8)	130 (75.6)	128 (73.1)	
Confusion, $n = 1,060$	608 (57.4)	232 (65.5)	376 (53.3)	254 (56.7)	354 (57.8)	114 (66.3)	103 (59.5)	
Drowsiness, $n = 1,059$	611 (57.7)	234 (66.1)	377 (53.5)	268 (60.1)	343 (56.0)	111 (64.9)	110 (63.6)	
Convulsions, $n = 1,063$	319 (30.0)	233 (65.3)	86 (12.2)	119 (26.5)	200 (32.6)	65 (37.8)	44 (25.3)	
GCS score, n = 1,010, median (IQR)	14 (11–15)	14 (10–15)	15 (11–15)	15 (11–15)	14 (10–15)	13 (10–15)	14 (11–15)	
GCS score <15,** n =	551 (52.6)	220 (63.4)	331 (47.3)	225 (50.5)	326 (54.2)	101 (59.4)	94 (54.0)	
1,047	551 (52.0)	220 (03.4)	551 (47.5)	220 (00.0)	520 (54.2)	101 (33.4)	34 (34.0)	
Arthralgia, P n = 893	140 (15.7)	16 (8.6)	124 (17.5)	59 (14.8)	81 (16.4)	20 (13.1)	27 (18.3)	
Myalgia, P n = 893	419 (46.9)	55 (29.6)	364 (51.5)	186 (46.6)	233 (47.2)	72 (47.1)	75 (50.7)	
Rash, $n = 1,058$	151 (14.3)	30 (8.5)	121 (17.2)	76 (17.0)	75 (12.3)	20 (11.7)	19 (10.9)	
Vomiting or diarrhea, n =	575 (54.0)	236 (66.1)	339 (48.0)	257 (57.2)	318 (51.7)	101 (58.7)	101 (58.1)	
1,064	()	()	()	- (-)	(-)	- ()	- ()	
Cough or shortness of	338 (31.8)	135 (37.8)	203 (28.7)	142 (31.6)	196 (31.9)	47 (27.3)	50 (28.7)	
breath, $n = 1,064$								
Cough, n = 1,064	260 (24.4)	97 (27.2)	163 (23.1)	115 (25.6)	145 (23.6)	35 (20.4)	39 (22.4)	
Shortness of breath, n =	155 (14.6)	75 (21.0)	80 (11.3)	54 (12.0)	101 (16.4)	20 (11.6)	23 (13.2)	
1,064								
Respiratory rate, n =	22 (20–30)	32.5 (25.5–	21 (20–23)	22 (20–28)	22 (20–30)	24 (20–32)	23 (20–28)	
1,035, breaths/min, median		42)						
(IQR)	774 (74 4)	242 (00 7)	450 (CE O)	244(77.0)	420 (72.0)	142 (05 1)	140 (90 0)	
WHO clinical CNS	771 (74.1)	313 (90.7)	458 (65.9)	341 (77.0)	430 (72.0)	143 (85.1)	140 (80.9)	
infection,†† n = 1,040 WHO encephalitis,†† n =	580 (55.8)	266 (77.1)	314 (45.2)	238 (53.7)	342 (57.3)	107 (63.7)	102 (59.0)	
1,040	500 (55.0)	200 (11.1)	514 (45.2)	200 (00.7)	042 (07.0)	107 (00.7)	102 (00.0)	
WHO meningitis,†† n =	742 (71.4)	290 (84.1)	452 (65.0)	335 (75.6)	407 (68.2)	140 (83.3)	138 (79.8)	
1,040	(,		((000-)			
WHO	551 (53.0)	243 (70.4)	308 (44.3)	232 (52.4)	319 (53.4)	104 (61.9)	100 (57.8)	
meningoencephalitis,†† n =								
1,040								
Fever + no neck stiffness	127 (12.2)	78 (22.6)	49 (7.1)	37 (8.4)	90 (15.1)	17 (10.1)	16 (9.3)	
+ GCS score <15, seizures,								
or both, $n = 1,040$								
Fever + neck stiffness +	191 (18.4)	47 (13.6)	144 (20.7)	103 (23.3)	88 (14.7)	36 (21.4)	38 (22.0)	
GCS score of $15 + no$								
seizures, n = 1,040 Fever + neck stiffness +	453 (43.6)	188 (54.5)	265 (38.2)	201 (45.4)	252 (42.2)	90 (53.6)	86 (49.7)	
GCS score <15, seizures, or	433 (43.0)	100 (04.0)	203 (30.2)	201 (43.4)	232 (42.2)	30 (33.0)	00 (43.7)	
both, $n = 1,040$								
Fever + neck stiffness, n	644 (61.9)	235 (68.1)	409 (58.9)	304 (68.6)	340 (57.0)	126 (75.0)	124 (71.7)	
= 1,040			()			(,	,	
Fever + GCS score <15,	580 (55.8)	266 (77.1)	314 (45.2)	238 (53.7)	342 (57.3)	107 (63.7)	102 (59.0)	
seizures, or both, n = 1,040	. ,	. ,	. ,		. ,	. ,	. ,	
Peripheral blood analysis								
Total leukocyte count, n =	10.7 (7.6–	12 (8.4–	10.2 (7.2–	10.8 (7.3–	10.7 (7.9–	11.6 (8.6–	11.9 (8.2–	
952, 10 ³ cells/mm ³ , median	14.5)	16.9)	13.8)	15)	14.2)	14.5)	16.4)	
(IQR)		450 (47.0)	000 (40.0)			04 (50.0)		
Elevated leukocyte	449 (47.2)	150 (47.9)	299 (46.8)	198 (49.0)	251 (45.8)	84 (53.9)	84 (53.5)	
count,‡‡ n = 952	AE (A 7)	22(7.0)	22 (2.6)	22 (E E)	(4, 0)	C(2,0)	$\overline{Z}(A E)$	
Low white blow cell count $\pm n = 952$	45 (4.7)	22 (7.0)	23 (3.6)	22 (5.5)	23 (4.2)	6 (3.9)	7 (4.5)	
count,‡‡ n = 952 Hematocrit, n = 948, %,	38 (33–42)	36 (31–39)	39 (34–43)	38 (33–42)	38 (33–42)	39 (35–43.5)	37 (31.5–	
median (IQR)	00 (00-42)	(00-10)		00 (00-42)	00 (00 ⁻ 1 2)	00 (00 +0.0)	41)	
Anemia, ± 1 n = 948	355 (37.5)	112 (35.7)	243 (38.3)	160 (39.8)	195 (35.7)	44 (28.2)	68 (43.9)	
Platelets, n = 649, 103	218.1	230 (191–	210 (180–	220 (190-	210 (180–	220 (200-	220 (180–	
count/mm ³ , median (IQR)	(186–290)	37Ò.5)	260)	289)	29 4)	299)	2 7 0)	

	Age group			Etiology				
	¥ ¥ ·				None	- 31		
Characteristic or parameter	All, n = 1,065	<15 y, n = 358	<u>></u> 15 y, n = 707	Confirmed, n = 450	confirmed, n = 615	Viral, n = 172	Bacterial, n = 175	
Thrombocytopenia,‡‡ n = 649	55 (8.5)	16 (6.8)	39 (9.4)	22 (7.8)	33 (9.0)	4 (3.5)	12 (10.6)	
CRP, n = 868, mg/L, median (IQR)	20.2 (3.6– 70.4)	9 (1.9–46.7)	24.5 (5.4– 83.6)	25.4 (6.0– 85.4)	14.2 (2.5– 61.0)	19.2 (4.7– 57.2)	64.4 (15.2– 154.7)	
Elevated CRP,±± n = 868	547 (63.0)	145 (51.6)	402 (68.5)	265 (69.2)	282 (58.1)	98 (64.9)	114 (79.7)	
Creatinine, n = 781,	79.6 (61.9 [́]	53.0 (44.2–	88.4 (70.7–	79.6 (61.9 [´]	79.6 (53.0 [́] –	70.7 (53.Ó–	79.6 (61.9 [́]	
µmol/L, median (IQR)	106.1)	70.7)	114.9)	106.1)	106.1)	88.4)	106.1)	
Total bilirubin, n = 855, µmol/L, median (IQR)	5.3 (3.4– 9.4)	5.1 (3.4– 10.3)	5.5 (3.6– 8.9)	5.8 (3.6– 10.3)	5.1 (3.4–8.6)	5.1 (3.4–8.7)	6.8 (4.8– 12.0)	
ALP, $n = 741$, IU/L,	94 (66–	149 (101–	80 (61–126)	93 (66–145)	97 (66–161)	105 (74–	92.5 (69.5–	
median (IQR)	156)	217)	47 (44 00)	47 (44 07)	47 (44 00)	144.5)	161)	
ALT, n = 831, IU/L, median (IQR)	17 (11–29)	16 (10–26)	17 (11–30)	17 (11–27)	17 (11–30)	14 (10–23)	18 (11–38)	
AST, n = 843, IU/L , median (IQR)	46 (29–80)	47 (30–88)	45 (28–77)	45 (28–78)	46 (30–81)	44.5 (28–68)	48.5 (27– 100)	
Elevated serum sodium,§§ n = 807	225 (27.9)	45 (17.8)	180 (32.5)	82 (22.8)	143 (31.9)	40 (28.6)	26 (19.4)	
Low serum sodium,§§ n = 807	63 (7.8)	31 (12.3)	32 (5.8)	31 (8.6)	32 (7.1)	8 (5.7)	16 (11.9)	
Hyperglycemia, IPP n = 991	237 (23.9)	81 (25.8)	156 (23.0)	105 (24.5)	132 (23.5)	40 (24.0)	53 (32.3)	
Severe hyperglycemia,	72 (7.3)	26 (8.3)	46 (6.8)	35 (8.2)	37 (6.6)	12 (7.2)	22 (13.4)	
CSF								
Turbid, $n = 999$	145 (14.5)	40 (12.2)	105 (15.7)	80 (18.4)	65 (11.5)	21 (12.4)	38 (23.2)	
Hemorrhagic, n = 999	126 (12.6)	36 (11.0)	90 (13.4)	47 (10.8)	79 (14.0)	22 (13.0)	19 (11.6)	
Xanthochromia, n = 999 Opening pressure, n =	44 (4.4) 20 (14–30)	7 (2.1) 19.8 (14–	37 (5.5) 20 (14–32)	20 (4.6) 21 (15.5–31)	24 (4.3) 18.5 (13.5–	5 (3.0) 20 (15–26.5)	11 (6.7) 20 (15.5–	
977, H_2O cm, median (IQR)	20 (14-30)	27)	20 (14-52)	21 (10.0-01)	30)	20 (10-20.0)	31.0)	
Elevated opening pressure,‡‡ n = 977	334 (34.2)	86 (27.6)	248 (37.3)	155 (36.4)	179 (32.5)	42 (24.9)	60 (37.3)	
Red cell count, $n = 886$, cells/mm ³ , median (IQR)	0 (0–5)	0 (0–10)	0 (0–5)	0 (0–0)	0 (0–10)	0 (0–0)	0 (0–10)	
Elevated red cell count,‡‡ n = 886	234 (26.4)	77 (27.2)	157 (26.0)	95 (24.0)	139 (28.4)	39 (24.5)	43 (28.7)	
Total white cell count, n = 975, cells/mm ³ , median (IQR)	40 (5–215)	35 (10–150)	40 (5–245)	65 (10–300)	20 (5–130)	82.5 (25– 275)	115 (20– 415)	
Elevated white cell count,±t n = 975	729 (74.8)	237 (74.8)	492 (74.8)	341 (80.2)	388 (70.6)	141 (84.9)	129 (80.1)	
Lymphocytes, n = 890, %, median (IQR)	24.6 (0–64)	28 (0–63)	23.8 (0–64)	24 (0–61)	25 (0–66.7)	33.3 (2–71)	15.1 (0–40)	
Elevated lymphocyte count,‡‡ n = 890	467 (52.5)	149 (51.2)	318 (53.1)	234 (59.5)	233 (46.9)	106 (68.4)	91 (62.3)	
Neutrophils, n = 890, %, median (IQR)	50 (0-83)	50 (0-85)	49 (0–82.1)	56 (13–89)	41 (0–78)	48.4 (19–83)	70 (14.1– 91)	
Elevated neutrophil count,‡‡ n = 889	644 (72.4)	213 (73.5)	431 (72.0)	309 (78.8)	335 (67.4)	130 (83.9)	116 (80.0)	
CSF eosinophilia, n = 1,001	46 (4.6)	7 (2.1)	39 (5.8)	11 (2.5)	35 (6.2)	9 (5.3)	2 (1.2)	
Protein, n = 955, g/L,	0.56 (0.3–	0.48 (0.28–	0.64 (0.32–	0.69 (0.33–	0.52 (0.28–	0.65 (0.34–	0.8 (0.3–	
median (IQR) Elevated protein,‡‡ n =	1.14) 601 (62.9)	0.97) 177 (57.3)	1.26) 424 (65.6)	1.28) 281 (66.9)	1.08) 320 (59.8)	1.2) 112 (66.3)	1.6) 108 (69.7)	
955 Glucose, n = 957,	3.56 (2.39–	3.89 (2.61–	3.44 (2.31–	3.33 (2.22–	3.83 (2.5–	3.56 (2.5–	3.4 (2.2–	
mmol/L, median (IQR)	4.89)	5.06)	4.78)	4.67)	5.06)	4.56)	4.8)	
Decreased glucose,‡‡ n = 957	280 (29.3)	58 (18.8)	222 (34.3)	138 (32.8)	142 (26.5)	45 (26.6)	51 (32.9)	
Decreased CSF:venous glucose ratio, ^{‡‡} n = 929	540 (58.1)	159 (54.8)	381 (59.6)	253 (61.7)	287 (55.3)	97 (58.8)	97 (64.2)	
Lactate, n = 969, mmol/L, median (IQR)	2.7 (1.9– 4.6)	2.8 (2–4.8)	2.7 (1.9– 4.5)	3.1 (2–5.2)	2.6 (1.8–4.3)	2.3 (1.8–3.4)	4 (2.4–7.4)	
Elevated lactate,‡‡ n = 985	650 (66.0)	217 (67.8)	433 (65.1)	298 (69.8)	352 (63.1)	93 (56.0)	132 (80.5)	
Treatment after lumbar puncture								

		Age group		Etiology			
					None		
	All, n =	<15 y, n =	<u>></u> 15 y, n =	Confirmed, n	confirmed, n	Viral, n =	Bacterial, n
Characteristic or parameter	1,065	358	707	= 450	= 615	172	= 175
Antibiotic, $n = 1,019$	934 (91.7)	336 (96.6)	598 (89.1)	421 (95.9)	513 (88.5)	163 (97.0)	166 (96.5)
Steroid, n = 951	224 (23.6)	110 (33.4)	114 (18.3)	83 (20.4)	141 (25.9)	38 (24.2)	35 (21.1)
Outcome							
Hospitalization, n = 846,	9 (5–14)	8 (5–13)	10 (5–15.5)	11 (6–17)	8 (5–13)	10 (6–14)	11 (7–17)
d, median (IQR)							
Mortality,## n = 893	235 (26.3)	70 (22.5)	165 (28.4)	94 (25.0)	141 (27.3)	23 (15.7)	43 (27.9)
In hospital death, n = 893	124 (13.9)	40 (12.9)	84 (14.4)	53 (14.1)	71 (13.7)	12 (8.2)	24 (15.6)
Moribund, $n = 893$	111 (12.4)	30 (9.7)	81 (13.9)	41 (10.9)	70 (13.5)	11 (7.5)	19 (12.3)
Delay between admission	1 (0–3)	1 (0–1)	1 (0–3)	1 (0–2)	1 (0–3)	0 (0-2)	1 (0–2)
and lumbar puncture, n =							

1,022, d, median (IQR)

*Values are no. (%) except where indicated otherwise. Bacterial patients are those with confirmed bacterial infection, including patients with single bacterial infection (170) or with bacterial co-infection (5). Viral patients are those with confirmed viral infection, including patients with single viral infection (169) or viral co-infection (3). ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CRP, C-reactive protein; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; IQR, interquartile range; LP, lumbar puncture; NA, not applicable; TB, *M. tuberculosis*.

†Population density of the village of residence: Population densities per village were from population census 2005, recovered from Lao DECIDE info Web site (platform of Government of Lao PDR, <u>www.decide.la)</u>. Occupation: work indoors = teacher, government official, business, factory worker, accountant; work outdoors = driver, building worker, merchant, carpenter, soldier, mechanic; other: housewife, no job, monk, retired, singer, health worker. History or physical examination were taken into account for: rash, confusion, neck stiffness, photophobia, fever (history of fever or >37.5°C during physical examination).

*Antibiotics used before LP were: Ceftriaxone (47%), Ampicilin (17.5%), Gentamycin (11.5%), Doxycycline (8.0%), Amoxicillin (6.6%), Cefotaxime (5.9%), Penicillin (5.6%), Chloramphenicol (3.4%), Co-trimoxazole (3.1%), Ofloxacin (2.7%), Erythromicin (2.2%), Cloxacillin (1.7%), Metronidazole (1.4%), Co-amoxiclav (1.2%), Ceftazidime (0.5%), Anti tuberculosis (0.8%), Quinine (0.5%), Cefalexin (0.3%), Tetracycline (0.2%).
§Data collected for children (<15 years old) were excluded for analysis.</p>

Considered as not reliable, the data were excluded from analysis for children <3 y old.

#Of these patients, 7 had hemiplegia, 11 had limb weakness, and 1 had paraplegia; 13 patients had admission or discharge diagnoses of Guillain-Barre syndrome. Retrospective evaluation of the likelihood of this diagnosis by using the Brighton system suggested that 4 patients met level 3 criteria for Guillain-Barre syndrome diagnostic certainty (Sejvar et al. 2011).

**Including confused and disoriented.

††WHO clinical CNS infection = fever with either GCS score <15, neck stiffness (history or examination), or history of seizure, patients with missing data for one of those criteria were not counted. WHO encephalitis = fever with either GCS score <15 or history of seizure. WHO meningitis = fever with GCS score <15 and/or neck stiffness. WHO meningoencephalitis = meeting both WHO encephalitis and WHO meningitis criteria. ‡‡Elevated and low parameters = above or below normal ranges (Appendix Table 3), anemia: hematocrit below normal range. In elevated CSF white cells count, were not taken into account the cases that could not be counted because of high turbidity. Eosinophilia = CSF eosinophils >10%. §\$Elevated serum sodium: lingher than 150 mmol/L, low serum sodium: lower than <130 mmol/L. Five patients (0.6%) had serum sodium <115</p>

mmol/L.

PHyperglycemia = blood glucose higher than 7.7 mmol/L, severe hyperglycemia: blood glucose higher than 11.1 mmol/L. ##Mortality includes patients who died at hospital and the ones who were taken to die at home = moribund.

	Reference range	e References
Blood parameters		
Total white cell count in blood,	× 10 ³ cells/µL	
M		Mayo Medical Laboratories (http://www.mayomedicallaboratories.com/test-
Birth	9.0-30.0	catalog/Clinical+and+Interpretive/9109) (2015)
1–7 d	9.4-34.0	
8–14 d	5.0-21.0	
15 d–1 mo	5.0-20.0	
2–5 mo	5.0-15.0	
6 mo–2 y	6.0–11.0	
2 y	5.0-12.0	
3–5 y	4.0–12.0	
6–11 y	3.4–9.5	
12–15 y	3.6–9	
Adults	3.5–10.5	
F Birth	9.0–30.0	
1–7 d		
8–14 d	9.4-34.0	
	5.0-21.0	
15 d–1 mo	5.0-20.0	
2–5 mo	5.0-15.0	
6 mo–2 y	6.0-11.0	
2 y	5.0-12.0	
3–5 y	4.0-12.0	
6–11 y 12, 15 y	3.4–10.8	
12–15 y	4.1-8.9	
Adults	3.5–10.5	
Hemoglobin, g/dL M		Mayo Medical Laboratories (http://www.mayomedicallaboratories.com/test-
	13.5–22.0	catalog/Clinical+and+Interpretive/9109) (2015)
Birth–7 d 8–14 d	12.5–22.0	calalog/Clinical+and+interpretive/9109) (2015)
15 d–1 mo	10.0-20.0	
2–5 mo	10.0–20.0	
6 mo–2 y	10.5–13.5 11.0–14.0	
2 y 3–5 y	11.0–14.5	
6–11 y	12.0–14.0	
12–15 y	12.8–14.0	
Adults	13.5–17.5	
F	13.5-17.5	
Birth–7 d	13.5–22.0	
8–14 d	12.5–22.0	
15 d–1 mo	10.0-20.0	
2–5 mo	10.0-20.0	
6 mo-2 y	10.5–13.5	
2 y	11.0–14.0	
2 y 3–5 y	11.8–14.7	
6–11 y	12.0–14.5	
12–15 y	12.2–14.8	
Adults	12.0–15.5	
Platelets, $\times 10^{3}$ /mm ³		
Birth–5 mo	150–350	Mayo Medical Laboratories (http://www.mayomedicallaboratories.com/test-
>6 mo	150-450	catalog/Clinical+and+Interpretive/9109) (2015)
CRP, mg/L	<8	Mayo Medical Laboratories. (http://www.mayomedicallaboratories.com/test-
		catalog/Clinical+and+Interpretive/9109) (2016)
Cerebral spinal fluid		
Opening pressure, cm H ₂ O		
Birth–1 mo	<8	UK Standards for Microbiology Investigations. Issued by the Standards Unit,
1 mo–11 y	12–28	Microbiology Services, PHE. Bacteriology B 27 Issue no: 6 Issue date:
<u>≥</u> 12 y	12–25	24.02.15. No information for children between 1–3 mo., have been included in the 3 mo.–11 y old group, the neonate group being a very specific group
Red cell count, cells/mm ³	0	
White cell count, cells/mm ³		
Birth–1 mo	0–30	UK Standards for Microbiology Investigations. Issued by the Standards Unit,
1–3 mo	0–9	Microbiology Services, PHE. Bacteriology B 27 Issue no: 6 Issue date:
3 mo–11 y	0–6	24.02.15.
<u>≥</u> 12 y	0–5	
Lymphocyte count, cell/mm ³		
Birth–1 mo	<20	

arameter per demographic	Reference range	References				
>1 mo	<u><</u> 5	The Royal Children's Hospital Melbourne				
	_	(http://www.rch.org.au/clinicalguide/guideline_index/CSF_Interpretation/)				
		(2015)				
Neutrophil count, cells/mm ³	0	The Royal Children's Hospital Melbourne				
		(http://www.rch.org.au/clinicalguide/guideline_index/CSF_Interpretation/) (2015)				
Protein, g/L						
Birth–1 mo	<1	UK Standards for Microbiology Investigations. Issued by the Standards Unit				
1–3 mo	0-0.09	Microbiology Services, PHE. Bacteriology B 27 Issue no: 6 Issue date:				
3 mo–11 y	0.05-0.4	24.02.15.				
<u>≥</u> 12 y	0.2-0.4					
Glucose, mmol/L						
Birth–1 mo	1.9–6.6	UK Standards for Microbiology Investigations. Issued by the Standards Unit				
1 mo–11 y	2.2-4.4	Microbiology Services, PHE. Bacteriology B 27 Issue no: 6 Issue date:				
<u>></u> 12 y	2.8-4.4	24.02.15.				
CSF:venus glucose ratio						
Birth–1 mo	0.75–0.8	UK Standards for Microbiology Investigations. Issued by the Standards Unit				
1 mo–11 y	<u>></u> 0.6	Microbiology Services, PHE. Bacteriology B 27 Issue no: 6 Issue date:				
<u>></u> 12 y	<u>></u> 0.6	24.02.15.No information for children between 1m-3m, have been included in				
		the 3m–11 y old group, the neonate group being a very specific group				
Lactate, mmol/L	1.1–2.2	UK Standards for Microbiology Investigations. Issued by the Standards Unit				
		Microbiology Services, PHE. Bacteriology B 27 Issue no: 6 Issue date: 24.02.15.				

*CRP, C-reactive protein; CSF, cerebrospinal fluid; M, male; F, female.

Appendix Table 4	Pathogens detected in the 37	patients with confirmed co-infection*
------------------	------------------------------	---------------------------------------

	No.			Second		Third	
Tissue	patients	Fist pathogen	Test	pathogen	Test	pathogen	Test
CSF							
Direct detection	1	HCMV	CSF PCR	Streptococcus	CSF PCR		
				pneumoniae			
	1	Dengue virus	NS1 in CSF	Rickettsia typhi	CSF PCR		
	11	HCMV	CSF PCR	Cryptococcus sp.	CSF culture (1		
					Ag in CSF)		
	2	Mycobacterium	CSF culture	Cryptococcus sp.	2 CSF culture, 1		
		tuberculosis			Ag in CSF		
	1	R. typhi	CSF PCR	HCMV	CSF PCR	VZV	CS
							PCF
	2	Haemophilus	CSF PCR	HCMV	CSF PCR		
		<i>influenzae</i> type b					
	1	Cryptococcus sp.	CSF indian ink	R. typhi	CSF PCR		
	1	VZV	CSF PCR	Cryptococcus sp.	CSF culture		
	1	Rickettsia felis	CSF PCR	HCMV	CSF PCR	Cryptococcus	CS
						sp.	cultu
	2	M. tuberculosis	CSF culture	HCMV	CSF PCR		
	1	Dengue virus	NS1 in CSF	S. pneumoniae	CSF culture		
	1	HSV1/2	CSF PCR	Cryptococcus sp.	CSF culture		
	1	Leptospira sp.	CSF PCR	M. tuberculosis	CSF culture		
	1	HSV1/2	CSF PCR	Cryptococcus sp.	CSF culture	HCMV	CS
							PCI
	1	HSV1/2	CSF PCR	HCMV	CSF PCR		
	1	Streptococcus	CSF culture	R. typhi	CSF PCR		
		suis					
Indirect detection	1	JEV	IgM in CSF	Measles virus	IgM in CSF		
Blood							
Direct detection	1	Dengue virus	NS1 in serum	Burkholderia	Blood culture		
				pseudomallei			
	1	Dengue virus	Serum PCR	R. typhi	Buffy coat PCR		

	No.			Second		Third	
Tissue	patients	Fist pathogen	Test	pathogen	Test	pathogen	Test
	1	Escherichia coli	Blood culture	Edwardsiella	Blood culture	Leptospira	Buffy
				tarda		spp.	coat
							PCR
Indirect detection	2	Orientia tsutsugamushi	4× rise antibody	Leptospira spp.	4× rise antibody		
	1	Dengue virus	IgM seroconversion	Mumps virus	IgG seroconversion		
	1	Dengue virus	IgM seroconversion	R. typhi	4x rise antibody		

Seroconversion *Confirmed etiology was determined according to positive results by tests presented in Table 3, consisting of direct detection of the pathogen in CSF or serum or IgM detection in CSF, or antibody seroconversion between admission and follow-up serum. Based on Phommasone et al. (*54*), when >1 pathogen was detected in1 patient, the confirmed etiology was determined by giving the priority to direct detection over indirect detection and to CSF over blood. Confirmed co-infection was defined when >1 pathogens were detected in the same site (CSF or blood), both by direct tests, or both by indirect tests. Ag, antigen; CSF, cerebrospinal fluid; HCMV, human cytomegalovirus; HSV, herpes simplex virus; JEV, *Japanese encephalitis virus*; NS1, nonstructural protein 1; VZV, varicella zoster virus.

Appendix Table 5. List of pathogens detected in patients as single confirmed etiology*

ersion
ersion
ersion
ersion
ersion
ersion
y rise
y 1100
n rise
11130

		Sample site an	d diagnostic test
Pathogen	No. patients	Cerebrospinal fluid	Blood
Mumps virus, n = 5	2	PCR	
	3		IgG seroconversion
Plasmodium falciparum, n = 4	4		smear
Escherichia coli, $n = 7$	1	Culture	
	6		Culture
Streptococcus agalactiae, n = 4	2	Culture	
	2		Culture
Neisseria meningitides, ℙ n = 4	4	PCR	
Salmonella group D	1	Culture	
Salmonella group B or C	1	Culture	
Salmonella Typhi	5		Culture
Streptococcus suis, n = 4	3	Culture	
	1	PCR	
Klebsiella pneumoniae, n = 3	2	Culture	
	1		Culture
Haemophilus influenzae type b, n = 7	2	Culture	
, , ,	5	PCR	
<i>Burkholderia pseudomallei</i> , n = 5	5		Culture
Staphylococcus aureus, n = 6	1	Culture	
· ·	5		Culture
<i>Morganella morganii</i> , n = 1	1	Culture	

*HSV, herpes simplex virus.
*HSV, herpes simplex virus.
*I/6 *Cryptococcus gatii*, 31/33 *Cryptococcus neoformans*, 9/13 *Cryptococcus* spp. were from HIV-positive patients.
‡*Cryptococcus* Antigen Latex Agglutination Test System.
§S. *pneumoniae* serotypes: 1 (3 patients), 14 (2 patients), 18C (1 patient), 19A (1 patient), 19F (2 patients), 23B (1 patient), 23F (1 patient), 4 (1 patient), 5 (2 patients), 6 (1 patient), 6C (1 patient). *N. meningitides:* one serogroup B and 3 of undetermined serogroup.

Appendix Table 6. Susceptibility testing of bacteria cultured from CSF and/or blood using antibiotic disc diffusion and E tests*

Patient				
no.	Organism	Susceptible	Intermediate	Resistant to
42	Group B Streptococcus	Chloramphenicol, erythromycin, ofloxacin, penicillin		Trimsulpha
512	Group B Streptococcus	Chloramphenicol, erythromycin, ofloxacin, penicillin,		
		vancomycin		
942	Group B Streptococcus	Chloramphenicol, erythromycin, ofloxacin, penicillin, vancomycin		
151	Streptococcus pneumoniae	Chloramphenicol	Erythromycin	Trimsulpha
233	S. pneumoniae	Ceftriaxone, penicillin, vancomycin	Erythromycin, ofloxacin	Chloramphenicol, trimsulpha
259	S. pneumoniae	Ceftriaxone, penicillin		Ofloxacin, trimsulpha
350	S. pneumoniae	Ceftriaxone, chloramphenicol, erythromycin, ofloxacin, vancomycin	Trimsulpha	Tetracycline, penicillin
374	S. pneumoniae	Erythromycin, penicillin	Ofloxacin	Chloramphenicol, trimsulpha
466	S. pneumoniae	Ceftriaxone, chloramphenicol, erythromycin, ofloxacin, penicillin, trimsulpha, vancomycin		·
600	S. pneumoniae	Ceftriaxone, chloramphenicol, erythromycin, ofloxacin, penicillin, trimsulpha, vancomycin		
711	S. pneumoniae	Chloramphenicol, erythromycin, ofloxacin, vancomycin		Penicillin, trimsulpha
715	S. pneumoniae	Chloramphenicol, erythromycin, ofloxacin, trimsulpha, vancomycin		Penicillin
724	S. pneumoniae	Chloramphenicol, erythromycin, ofloxacin, penicillin, trimsulpha, vancomycin		

Patient	Organism	Susceptible	Intermediate	Resistant to
42	S. pneumoniae	Chloramphenicol, erythromycin, ofloxacin, penicillin,		
69	S. pneumoniae	trimsulpha, vancomycin Chloramphenicol, erythromycin, ofloxacin, penicillin,		
15	Streptococcus suis	trimsulpha, vancomycin Ceftriaxone, chloramphenicol, ofloxacin, penicillin,		Erythromycin,
504	S. suis	trimsulpha, vancomycin Chloramphenicol, penicillin, vancomycin		tetracycline Erythromycin
,004	S. suis	Chloramphenicol, ofloxacin, penicillin, vancomycin		Erythromycin
,055	S. suis	Ceftriaxone, chloramphenicol, ofloxacin, vancomycin		Erythromycin, tetracycline
5	Staphylococcus aureus	Cephalothin, erythromycin, gentamicin, methicillin, oxacillin, trimsulpha, cefoxitin		Penicillin, tetracycline
82	S. aureus	Cefoxitin, chloramphenicol, erythromycin, gentamicin, methicillin, oxacillin, tetracycline, trimsulpha		Penicillin
37	S. aureus	Cefoxitin, chloramphenicol, gentamicin, methicillin, oxacillin, penicillin, tetracycline, trimsulpha, vancomycin	Erythromycin	
90	S. aureus	Cefoxitin, erythromycin, gentamicin, methicillin, oxacillin, trimsulpha, tetracycline, vancomycin		Chloramphenicol, penicillin
57	S. aureus	Cefoxitin, gentamicin, oxacillin, trimsulpha, vancomycin		Erythromycin, penicillin, tetracycline
52	S. aureus	Cephalothin, cefoxitin, chloramphenicol, erythromycin, gentamicin, oxacillin, trimsulpha		Penicillin, tetracycline
81	Burkholderia pseudomallei	Augmentin, ceftazidime, chloramphenicol, ciprofloxacin, doxycycline, imipenem, oxacillin, trimsulpha		
10	B. pseudomallei	Augmentin, ceftazidime, chloramphenicol, ciprofloxacin, doxycycline, imipenem, trimsulpha		
41	B. pseudomallei	Augmentin, ceftazidime, ciprofloxacin, doxycycline, imipenem, trimsulpha		Tains and a loss
93	B. pseudomallei	Augmentin, ceftazidime, ciprofloxacin, chloramphenicol, doxycycline, imipenem		Trimsulpha
,032	B. pseudomallei	Augmentin, ceftazidime, ciprofloxacin, chloramphenicol, doxycycline, imipenem		Trimsulpha
,065 57	B. pseudomallei	Augmentin, ceftazidime, chloramphenicol, ciprofloxacin, doxycycline, imipenem, trimsulpha	Nolidivia asi-	
57 14	Salmonella sp. group B or C	Ampicillin, ceftriaxone, chloramphenicol, trimsulpha	Nalidixic acid	
36	Salmonella group D	Ampicillin, ceftriaxone, chloramphenicol, nalidixic acid, ofloxacin, trimsulpha Missing data		
36 52	<i>Salmonella</i> Typhi <i>S.</i> Typhi	Missing data Ampicillin, azithromycin, ceftriaxone, chloramphenicol,		
52	o. rypni	ciprofloxacin, nalidixic acid, ofloxacin, trimsulpha,		
92	S. Typhi	Ampicillin, azithromycin, ceftriaxone, chloramphenicol, nalidixic acid, ofloxacin, trimsulpha		
40	S. Typhi	Ampicillin, azithromycin, ceftriaxone, chloramphenicol, nalidixic acid, ofloxacin, trimsulpha		
40	Klebsiella pneumoniae	Augmentin, cephalothin, chloramphenicol, ceftriaxone, gentamicin, trimsulpha		Ampicillin
15	K. pneumoniae	Augmentin, chloramphenicol, gentamicin, imipenem		Ampicillin, cephalothin, ceftazidime,
,041	K. pneumoniae	Augmentin, cephalothin, ceftriaxone, chloramphenicol, gentamicin, trimsulpha		ceftriaxone, trimsulpha Ampicillin
98 93	Escherichia coli E. coli	Augmentin, ceftriaxone, chloramphenicol, gentamicin Augmentin, cephalothin, ceftriaxone, chloramphenicol,	Cephalothin	Ampicillin, trimsulpha Ampicillin, trimsulpha
06	E. coli	gentamicin Augmentin, cephalothin, ceftriaxone, chloramphenicol, gentamicin		Ampicillin, trimsulpha
23	E. coli	Gentamicin Ceftriaxone, chloramphenicol, gentamicin	Augmentin, cephalothin	Ampicillin, trimsulpha
'33 91	E. coli E. coli	Ceftriaxone, chloramphenicol, gentamicin, trimsulpha Ampicillin, augmentin, cephalothin, ceftriaxone, chloramphenicol, gentamicin	Augmentin	Ampicillin, cephalothin
34	E. coli	Ceftriaxone, chloramphenicol, gentamicin		Ampicillin, augmentin, cephalothin, trimsulpha
806	Edwardsiella tarda	Ampicillin, augmentin, cephalothin, ceftriaxone, chloramphenicol, gentamicin, ofloxacin, trimsulpha		аттзирна

Patient				
no.	Organism	Susceptible	Intermediate	Resistant to
138	Haemophilus influenzae	Ceftriaxone, trimsulpha	Ampicillin	Chloramphenicol
722	H. influenzae	Ampicillin, ceftriaxone, chloramphenicol		
861	H. influenzae	Ceftriaxone		Ampicillin, chloramphenicol
851	Morganella morganii	Ceftriaxone, chloramphenicol, gentamicin, trimsulpha		Ampicillin, augmentin, cephalothin

*S. pneumoniae with a penicillin MIC >0.06 or a ceftriaxone MIC >0.5 have been classified as resistant, according to Clinical and Laboratory Standards Institute guidelines. trimsulpha, trimethoprim/sulfamethoxazole.

Appendix Table 7. Demographic, clinical	, blood, and CS						>20 patients)*	
			O. tsutsugamushi,		Rickettsia	S. pneumoniae,		Cryptococcus
Characteristic or parameter	JEV, n = 94	= 27	n = 31	spp., n = 25	spp., n = 24	n = 22	TB,† n = 20	spp., n = 70
Demographic								
Male	55 (58.5)	22 (81.5)	22 (71.0)	17 (68.0)	17 (70.8)	13 (59.1)	14 (70.0)	40 (57.1)
Age, y, median (IQR)	13 (8–20)	20 (6–30)	16 (8–30)	25 (12–39)	31.5 (15–51)	17 (0.5–28)	35 (20–53)	33 (27–41)
<1 mo	0	1 (3.7)	0	0	0	0	0	0
1 mo-<1 y	0	2 (7.4)	2 (6.5)	2 (8.0)	2 (8.3)	7 (31.8)	0	0
1–<5 y	13 (13.8)	3 (11.1)	0	1 (4.0)	1 (4.2)	0	0	0
5–<15 y	37 (39.4)	2 (7.4)	12 (38.7)	4 (16.0)	3 (12.5)	3 (13.6)	0	0
<u>></u> 15 y	44 (46.8)	19 (70.4)	17 (54.8)	18 (72.0)	18 (75.0)	12 (54.6)	20 (100)	70 (100)
Distance from hospital, km, median	75 (15–155)	12 (4–54)	19 (9–46)	36 (13–154)	28 (7–58)	23 (8–50)	16 (6–124)	13 (6–53)
(IQR)								
Population density per km ² ,‡ median	163 (31–	1,346 (173–	295 (109–1,228)	326 (63–741)	262 (98–767)	403 (101-1,963)	421 (156-1,982)	563 (173–1,686)
(IQR)	1,371)	2,510)						
Occupation,§ n = 78	,							
Farmer	7 (17.5)	1 (8.3)	3 (21.4)	6 (37.5)	2 (13.3)	3 (30.0)	5 (33.3)	10 (15.9)
Work indoors	4 (10.0)	3 (25.0)	1 (7.1)	1 (6.3)	2 (13.3)	Ò Í	2 (13.3)	8 (12.7)
Work outdoors	3 (7.5)	4 (33.3)	3 (21.4)	3 (18.8)	5 (33.3)	3 (30.0)	4 (26.7)	20 (31.8)
Student	15 (37.5)	3 (25.0)	5 (35.7)	1 (6.3)	1 (6.7)	1 (10.0)	2 (13.3)	3 (4.8)
Other	11 (27.5)	1 (8.3)	2 (14.3)	5 (31.3)	5 (31.3)	3 (30.0)	2 (13.3)	22 (34.9)
History	\/	()	\/	- (/	- (/	- ()	(/	(= = /
HIV seropositive	0	1 (5.6)	1 (5.6)	0	0	0	1 (12.5)	41 (78.9)
Diabetic	Ō	0	0	1 (5.9)	2 (11.8)	0	1 (7.1)	1 (1.7)
Tuberculosis	0	1 (4.8)	1 (4.6)	0	0	0	1 (10.0)	6 (12.8)
Antibiotic use before LP	70 (80.5)	18 (75.0)	24 (85.7)	15 (65.2)	11 (52.4)	13 (65.0)	11 (61.1)	28 (50.9)
Steroid use before LP	4 (5.8)	1 (4.8)	1 (3.9)	0	0	1 (7.1)	3 (20.0)	3 (5.8)
Alcohol excess¶	10 (25.6)	8 (47.1)	4 (36.4)	4 (26.7)	10 (58.8)	7 (70.0)	5 (29.4)	25 (43.1)
Pet at home (dog cat)	50 (100)	13 (81.3)	17 (85.0)	13 (92.9)	11 (100)	12 (85.7)	9 (90.0)	31 (86.1)
Poultry at home	56 (100)	12 (80.0)	12 (80.0)	13 (100)	11 (91.7)	15 (88.2)	7 (100)	26 (86.7)
Pigs at home	44 (95.7)	7 (70.0)	6 (66.7)	12 (100)	7 (87.5)	6 (66.7)	6 (100)	25 (80.7)
Signs and symptoms	()	(/		(/	()	- ()	- (/	- ()
Days of fever at admission, median	5 (3–7)	4.5 (3–7)	6.5 (4-8)	4 (3–6)	4 (2.5–7)	2 (1–4)	10 (6–14)	7 (1–21)
(IQR)				(0, 0)	()	-()		. (,
Fever	92 (97.9)	24 (92.3)	31 (100)	25 (100)	24 (100)	22 (100)	19 (95.0)	60 (85.7)
Headache#	82 (91.1)	20 (87.0)	25 (89.3)	22 (95.7)	21 (95.5)	13 (86.7)	19 (95.0)	67 (95.7)
Neck stiffness	82 (87.2)	18 (66.7)	23 (74.2)	17 (68.0)	17 (70.8)	18 (81.8)	17 (85.0)	38 (54.3)
Confusion	74 (78.7)	18 (66.7)	11 (37.9)	12 (48.0)	16 (66.7)	17 (77.3)	15 (75.0)	24 (34.3)
Drowsiness	72 (76.6)	14 (51.9)	19 (65.5)	14 (56.0)	17 (70.8)	14 (63.6)	14 (70.0)	32 (46.4)
Convulsions	40 (42.6)	9 (33.3)	7 (22.6)	5 (20.0)	4 (16.7)	10 (47.6)	2 (10.0)	2 (2.9)
GCS score, median (IQR)	13 (9.5–15)	13 (10–15)	15 (14–15)	15 (10–15)	14 (11–15)	11 (10–14)	11.5 (9–14)	15 (14–15)
GCS score <15**	68 (72.3)	17 (63.0)	10 (32.3)	12 (48.0)	14 (58.3)	17 (77.3)	15 (75.0)	19 (27.5)
Arthralgia#	7 (7.8)	5 (21.7)	4 (14.3)	2 (8.7)	3 (13.6)	3 (20.0)	4 (20.0)	9 (12.9)
Myalgia#	44 (48.9)	13 (56.5)	15 (53.6)	11 (47.8)	10 (45.5)	6 (40.0)	9 (45.0)	28 (40.0)
Rash	8 (8.5)	5 (18.5)	7 (23.3)	2 (8.0)	1 (4.2)	1 (4.6)	2 (10.0)	24 (34.8)
Vomiting or diarrhea	56 (59.6)	16 (59.3)	20 (66.7)	15 (60.0)	11 (45.8)	11 (50.0)	10 (50.0)	36 (51.4)
Cough	20 (21.3)	7 (25.9)	5 (16.7)	4 (16.0)	5 (20.8)	4 (18.2)	6 (30.0)	29 (41.4)
Shortness of breath	11 (11.7)	2 (7.4)	2 (6.7)	4 (16.0)	2 (8.3)	6 (27.3)	1 (5.0)	8 (11.4)
		<u> (</u> (, - ,)	2 (0.7)	+(10.0)	2 (0.0)	0 (21.0)	1 (0.0)	0(11.7)

Appendix Table 7. Demographic, clinical, blood, and CSF parameters data at admission of patients with confirmed etiology, for main etiologies (>20 patients)*

			O. tsutsugamushi,	Leptospira	Rickettsia	S. pneumoniae,		Cryptococcus
Characteristic or parameter	JEV, n = 94	= 27	n = 31	spp., n = 25	spp., n = 24	n = 22	TB,† n = 20	spp., n = 70
Cough or shortness of breath	26 (27.7)	8 (29.6)	5 (16.7)	7 (28.0)	6 (25.0)	6 (27.3)	6 (30.0)	31 (44.3)
Respiratory rate, breaths/min,	24 (21–32)	22 (20–32)	23 (20–27)	23 (20–26)	22 (20–26)	23.5 (20–40)	22 (20–23)	20 (20–22)
median (IQR)								
WHO clinical CNS infection ⁺⁺	89 (94.7)	21 (80.8)	26 (83.9)	19 (76.0)	18 (75.0)	21 (100)	17 (85.0)	36 (52.2)
WHO encephalitis ^{††}	74 (78.7)	16 (61.5)	13 (41.9)	13 (52.0)	15 (62.5)	18 (85.7)	15 (75.0)	16 (23.2)
WHO meningitis ⁺⁺	88 (93.6)	21 (80.8)	25 (80.7)	19 (76.0)	18 (75.0)	21 (100)	17 (85.0)	36 (52.2)
WHO meningoencephalitis++	73 (77.7)	16 (61.5)	12 (38.7)	13 (52.0)	15 (62.5)	18 (85.7́)	15 (75.0)́	16 (23.2)
Fever + no neck stiffness + GCS	7 (7.5)	5 (19.2)	3 (9.7)	2 (8.0)	1 (4.2)	4 (19.1)	1 (5.0)	1 (1.5)
score <15 and/or seizures	. (0 (1012)	0 (011)	= (0.0)	. ()	. ()	. (0.0)	. (
Fever + neck stiffness + GCS	15 (16.0)	5 (19.2)	13 (41.9)	6 (24.0)	3 (12.5)	3 (14.3)	2 (10.0)	20 (29.0)
score of 15 + no seizures	10 (10.0)	5 (15.2)	10 (41.5)	0 (24.0)	0 (12.0)	5 (14.5)	2 (10.0)	20 (20.0)
Fever + neck stiffness + GCS score	67 (71.3)	11 (42.3)	10 (32.3)	11 (44.0)	14 (58.3)	14 (66.7)	14 (70.0)	15 (01 7)
	07 (71.3)	11 (42.3)	10 (32.3)	11 (44.0)	14 (56.5)	14 (00.7)	14 (70.0)	15 (21.7)
<15 and/or seizures	00 (07 0)		00 (74 0)	47 (00 0)	47 (70.0)	47 (04 0)	40 (00 0)	
Fever + neck stiffness	82 (87.2)	16 (61.5)	23 (74.2)	17 (68.0)	17 (70.8)	17 (81.0)	16 (80.0)	35 (50.7)
Fever + GCS score <15 and/or	74 (78.7)	16 (61.5)	13 (41.9)	13 (52.0)	15 (62.5)	18 (85.7)	15 (75.0)	16 (23.2)
seizures								
Peripheral blood analysis								
Total leukocyte count, 10 ³ cells/mm ³ ,	12.3 (8.8–	9.8 (6.9–13)	12.1 (9.4–14.0)	11.3 (8.5–16)	8.8 (6.6–13.2)	15 (9.2–18.0)	11.5 (7.1–14.4)	8 (5.4–12.3)
median (IQR)	16.2)							
Elevated white cell count [±]	55 (64.7)	8 (32.0)	18 (69.2)	10 (45.5)	9 (37.5)	11 (57.9)	10 (55.6)	21 (33.9)
Low white cell count±±	2 (2.4)	3 (12.0)	1 (3.9)	1 (4.6)	Ò Ó	2 (10.5)	Û	8 (12.9)
Hematocrit (%), median (IQR)	38.1 (35.1–	39.3 (36.1–43)	38.4 (35.6-40.8)	38.5 (33–41)	35.9 (31–42)	36 (30-41)	36.7 (33-43)	38 (32-42)
	43)							
Anemia±±	23 (27.1)	6 (24.0)	10 (38.5)	8 (36.4)	13 (54.2)	8 (42.1)	8 (47.1)	31 (50.0)
Platelet, 10 ³ count/mm ³ , median	218 (190–	270 (200–346)	210 (180–229)	220 (180–	220 (190–	297 (190–389)	271 (204–368.5)	230 (200–319)
(IQR)	265)	210 (200 040)	210 (100 220)	260)	280)	207 (100 000)	211 (204 000.0)	200 (200 010)
Thrombocytopenia [±]	2 (2.9)	1 (5.6)	3 (13.6)	2 (11.1)	1 (5.3)	0	2 (16.7)	2 (5.4)
CRP, mg/L, median (IQR)	27.6 (6.1–	8.6 (2.5–33.8)	43.4 (21.1–118.6)	98.4 (39.4–	15.4 (5.1–	153.3 (38.2–	5.9 (2.4–96.4)	21.2 (5.4–44.1)
CRF, IIIg/L, Illeulali (IQR)		0.0 (2.3–33.0)	43.4 (21.1–110.0)	`		```	5.9 (Z.4–90.4)	21.2 (3.4–44.1)
	66.7)	40 (50 0)		156.8)	87.7)	205)	O(47.4)	40 (05 0)
Elevated CRP‡‡	58 (69.9)	12 (50.0)	23 (95.8)	15 (83.3)	10 (52.6)	19 (100)	9 (47.4)	42 (65.6)
Creatinine, µmol/L, median (IQR)	70.7 (53.0–	70.7 (61.9–	70.7 (53.0–97.2)	88.4 (70.7–	79.6 (70.7–	70.7 (44.2–	88.4 (70.7–	79.6 (61.9–
	88.4)	141.4)		123.8)	106.1)	106.1)	114.9)	1,061)
Total bilirubin, µmol/L, median (IQR)	5.1 (3.4–8.6)	5.1 (3.4–10.3)	6.8 (5.0–10.3)	7.5 (5.1–11.3)	6.8 (5.0–11.1)	8.6 (4.1–12.0)	5.1 (4.3–10.3)	5.5 (3.4–7.5)
ALP, IU/L, median (IQR)	115 (76–144)	119 (86–145)	112 (81–249)	101 (78–182)	83 (75–141)	81 (70–94)	72 (60–116)	76 (59–110)
ALT, IU/L, median (IQR)	14 (10–23)	18.5 (11–25)	30 (18–70)	15 (11–23)	16 (9–36)	19 (10–26)	13 (8–24)	18 (12–28)
AST, IU/L, median (IQR)	49 (30-74.5)	44 (32–59)	72 (36–175)	34 (23-79)	34 (26-85)	62 (35–100)	28 (20-55)	42 (29-65)
Hyperglycemia§§	27 (28.7)	7 (28.0)	5 (19.2)	7 (29.2)	6 (25.0)	10 (47.6)	6 (30.0)	8 (11.9)
Severe hyperglycemia§§	10 (10.6)	1 (4.0)	2 (7.7)	2 (8.3)	1 (4.2)	4 (19.1)	1 (5.0)	1 (1.5)
CSF	- \ /	<u> </u>	\/	X= = 1		<u> </u>	X= = 7	
Turbid	8 (8.7)	3 (11.1)	4 (16.0)	3 (12.5)	0	13 (61.9)	1 (5.0)	13 (19.1)
Hemorrhagic	3 (3.3)	6 (22.2)	2 (8.0)	2 (8.3)	3 (13.6)	2 (9.5)	2 (10.0)	4 (5.9)
Xanthochromia	0	2 (7.4)	2 (8.0)	2 (0.3)	1 (4.6)	2 (9.3)	2 (10.0)	1 (1.5)
Opening pressure, H_2O cm, median	20 (15.5–	19 (15–27)	21 (18–29)	20 (17–27)	17.5 (13.5–	24 (12–35)	30.5 (19–40.5)	29 (18–40)
	``	19(10-27)	21 (10-29)	20 (17-27)		24 (12-55)	50.5 (19-40.5)	29 (10-40)
(IQR)	24.5)	0 (22 2)	0 (20 0)	0 (24 0)	25.5) 6 (25.0)	7 (26 0)	12 (60.0)	20 (50 1)
Elevated opening pressure,‡‡	14 (15.1)	9 (33.3)	8 (30.8)	8 (34.8)	6 (25.0)	7 (36.8)	12 (60.0)	39 (59.1)

		<i>Dengue virus</i> , n	O. tsutsugamushi,	Leptospira	Rickettsia	S. pneumoniae,		Cryptococcus
Characteristic or parameter	JEV, n = 94	= 27	n = 31	spp., n = 25	spp., n = 24	n = 22	TB,† n = 20	spp., n = 70
Red cell count, cells/ mm ³ , median	0 (0–0)	0 (0–0)	0 (0–5)	0 (0–0)	0 (0–5)	0 (0–160)	0 (0–0)	0 (0–0)
(IQR)								
Elevated red cell count ⁺⁺	16 (17.8)	5 (21.7)	6 (27.3)	5 (21.7)	4 (25.0)	9 (42.9)	4 (20.0)	12 (19.1)
Total white cell count (cells/mm ³),	82.5 (30–	30 (0–155)	107.5 (50–230)	60 (5–357.5)	10 (0–85)	400 (167.5–	155 (55–440)	20 (7.5–75)
median (IQR)	275)					1,140)		
Elevated white cell count ⁺⁺	85 (90.4)	14 (56.0)	21 (80.8)	17 (70.8)	13 (59.1)	20 (100)	18 (90.0)	51 (75.0)
Lymphocytes, %, median (IQR)	47.7 (11–71)	3 (0–50)	20 (0-36)	22 (0-59.5)	10.5 (0-50)	11.5 (2–30)	28 (6.5–73.5)	27.5 (0-52.4)
Elevated lymphocyte count [‡]	63 (73.3)	9 (37.5)	13 (68.4)	14 (58.3)	6 (30.0)	15 (83.3)	16 (80.0)	28 (42.4)
Neutrophils, %, median (IQR)	48.7 (23-82)	32 (0-71.5)	70 (20-95)	49 (0.5-78)	48.5 (0-78)	88.5 (70-98)	66.5 (11.6-82.5)	50 (0-84)
Elevated neutrophil count [‡]	76 (88.4)	14 (58.3)	17 (89.5)	18 (75.0)	12 (60.0)	18 (100)	16 (80.0)	49 (74.2)
CSF eosinophilia¶¶	2 (2.2)	3 (11.1)	0	1 (4.2)	1 (4.2)	0	0	0
Protein, g/L, median (IQR)	0.62 (0.34–	0.72 (0.37–1.4)	0.7 (0.4–1.5)	0.3 (0.3–0.9)	0.7 (0.3–1.3)	1.6 (0.6–5.5)	1.1 (0.4–2.3)	0.51 (0.31-0.9
	0.98)	· · · · ·	· · · · ·	()	()	· · · ·	(, , , , , , , , , , , , , , , , , , ,	,
Elevated protein [±]	61 (64.9)	17 (65.4)	16 (72.7)	11 (52.4)	11 (52.4)	19 (86.4)	16 (80.0)	40 (61.5)
Glucose, mmol/L, median (IQR)	3.7 (2.8-4.6)	3.7 (2.7–5.5)	3.8 (2.9-5.3)	4.2 (3.6–5)	3.3 (2.7-4.7)	2.5 (1.8-4.2)	2.2 (1.5–3.3)	2.7 (1.8-4.2)
Decreased glucose ^{‡‡}	19 (20.2)	7 (26.9)	4 (18.2)	3 (14.3)	6 (28.6)	11 (50.0)	13 (65.0)	34 (51.5)
Decreased CSF:venus glucose	51 (54.3)	13 (54.2)	12 (57.1)	8 (38.1)	12 (57.1)	17 (81.0)	18 (90.0)	41 (64.1)
ratio‡‡	· · · ·	· · · ·		(<i>)</i>	· · ·	()		· · ·
Lactate, mmol/L, median (IQR)	2.1 (1.6–3)	2.8 (1.8–5.2)	3 (2.5–3.9)	2.8 (2.0-5.0)	2.5 (1.7–5)	11.6 (4.9–19.0)	6.9 (5.4–7.6)	3.1 (1.9-4.7)
Elevated lactate ^{‡‡}	43 (47.8)	15 (55.6)	21 (80.8)	17 (70.8)	17 (70.8)	17 (85.0)	20 (100)	48 (71.6)
Treatment post LP		, ,		, ,			· · · ·	, ,
Antibiotic	92 (98.9)	26 (96.3)	29 (100)	25 (100)	21 (87.5)	21 (95.5)	19 (95.0)	61 (91.0)
Steroid	21 (23.6)	6 (24.0)	4 (14.8)	3 (12.0)	2 (8.7)	6 (27.3)	8 (42.1)	7 (12.3)
Outcome	\$	× 7		x x	\$ <i>T</i>	\$ 7 F	х <i>г</i>	x x
Days of hospitalization, median (IQR)	10 (8–14)	10 (6–15)	8 (5–12)	9.5 (5–16)	9 (3–13)	13 (10–17)	11 (8–26)	18 (5–26.5)
Mortality and discharge moribund	11 (12.9)	5 (20.0)	3 (12.0)	3 (13.6)	6 (26.1)	8 (36.4)	10 (58.8)	20 (37.7)
Delay between admission and lumbar	0 (0–1)	0 (0–1)	1 (0–3)	0.5 (0-2)	1 (0–5)	1 (0–1)	0 (0–5)	2 (0–5)
puncture, d, median (IQR)	· · /	· · /	· · /	· · /	· · /	× /	· · /	· /

Characteristic or parameter JEV, $n = 94$ = 27 $n = 31$ spp., $n = 25$ spp., $n = 24$ $n = 22$ TB, $\dagger n = 20$ spp., $n = 24$		<i>Dengue virus</i> , n	O. tsutsugamushi,	Leptospira	Rickettsia	S. pneumoniae,	Cryptococcus
	Characteristic or parameter		n – 31	cnn n - 25	spp., n = 24	n = 22	spp., n = 70

*Values are no. (%), except where stated otherwise. History or physical examination were taken into account for rash, confusion, neck stiffness, fever (history of fever or >37.5°C during physical examination). Described in the table are the patients with single confirmed etiology, for etiology detected in >20 patients. A complete list of single confirmed etiologies is provided in Appendix Table 5. Confirmed etiology was determined according to positive results by the tests presented in Table 3, consisting in direct detection of the pathogen in CSF or blood, IgM detection in CSF, antibody server. When >1 pathogens were detected in a same patient, the confirmed etiology was determined by giving the priority to direct detection over indirect detection then to CSF over blood. Confirmed co-infection was defined when > one pathogens were detected by the same kind of test in the same matrix. List of confirmed co-infections in supplemental data (Appendix Table 4). The other etiologies confirmed in <20 patients were cytomegalovirus in 12 patients, herpes simplex virus in 15, *Enterovirus* in 10, varicella zoster virus in 6, mumps virus in 5, *Plasmodium falciparum* in 4, and other bacteria in 48 patients (the list of bacteria is provided in Appendix Table 5). Among 35 patients with CSF eosinophils >10%, 4 were found positive for *Angiostrongylus cantonensis* by PCR (55). Among 662 patients tested for syphilis by the SD. Bioline RDT (Cat No. 06FK10) on serum then confirmed given in Appendix Table 6. Typing information for *Cryptococcus* spp. is presented in Appendix Table 5. ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; CNS, central nervous system; CRP, C-reactive protein; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; IQR, interquartile range; JEV, *Japanese encephalitis virus*; LP, lumbar puncture; TB, *M. tuberculosis*; WHO, world health organization. †Nine *Mycobacterium tuberculosis* were sensitive to isoniazid (0.1 µg/mL), et µg/mL), and pyrazinamide (100.0 µg/mL), and pyra

‡Population density of the village of residence: Population densities per village were from population census 2005, recovered from Lao DECIDE info Web site (platform of Government of Lao PDR, www.decide.la).

§Occupation classification: work indoors = teacher, government official, business, factory worker, accountant; work outdoors = driver, building worker, merchant, carpenter, soldier, mechanic; other = housewife, no job, monk, retired, singer, health worker.

¶Data collected for children (<15 y old) were excluded for analysis.

#Considered as not reliable, the data were excluded from analysis for children <3 years old.

**Including confused and disoriented.

++WHO clinical CNS infection= fever with either GCS score <15, neck stiffness (history or examination), or history of seizure, patients with missing data for 1 of those criteria were not counted. WHO encephalitis = fever with GCS score <15 or neck stiffness or both. WHO meningoencephalitis = meeting both WHO encephalitis and WHO meningitis criteria.

‡‡Elevated and decreased parameters = above or below normal ranges (Appendix Table 3), anemia: hematocrit below normal range. In elevated CSF white cell count, were not taken into account the cases that could not be counted because of high turbidity.

§§Hyperglycemia: blood glucose higher than 7.7 mmol/L, severe hyperglycemia: blood glucose higher than 11.1 mmol/L. ¶CSF eosinophils >10%.

Appendix Table 8.	Comparison	of etioloav	distribution	according to age*
	eempaneen	er energy	alottioation	according to ago

		of group with , no. (%)			Proportion of etiology, r		
	oliology	, 1101 (70)	-	All	ouology, i	10. (70)	- Age, y,
Etiologic agent	Children	Adult	p value	patients	Children	Adult	median (IQR)
Overall	n = 358	n = 707		n = 1,065	358 (33.6)	707 (66.4)	23 (8–38)
Confirmed etiology	138 (38.6)	312 (44.1)	0.086	450 (42.3)	138/450 (30.7)	312 (69.3)	23 (10-38)
Co-infection	8 (2.2)	29 (4.1)	0.109	37 (3.5)	8 (21.6)	29 (78.4)	29 (22–33)
Orientia tsutsugamushi	14 (3.9)	17 (2.4)	0.168	31 (2.9)	14 (45.2)	17 (54.8)	16 (8–30)
Leptospira sp.	7 (2.0)	18 (2.5)	0.610	25 (2.3)	7 (28.0)	18 (72.0)	25 (12–39)
Rickettsia sp.	6 (1.7)	18 (2.5)	0.404	24 (2.3)	6 (25.0)	18 (75.0)	31.5 (15–51)
Stretococcus pneumoniae	10 (2.8)	12 (1.7)	0.234	22 (2.1)	10 (45.5)	12 (54.5)	17 (0.5–28)
Mycobacterium tuberculosis	Ò	20 (2.8)	0.001	20 (1.9)	О́	20 (100)	35 (20–53)
Other bacteria	16 (1.5)	32 (4.5)	0.012	48 (4.5)	16 (33.3)	32 (66.7)	23.5 (2.7-45)
Japanese encephalitis virus	50 (14.0)	44 (6.2)	<0.001	94 (8.8)	50 (53.2)	44 (46.8)	13 (8–20)
Dengue virus	8 (2.2)	19 (2.7)	0.624	27 (2.5)	8 (29.6)	19 (70.4)	20 (6-30)
Herpes simplex 1 and 2	3 (0.8)	12 (1.7)	0.237	15 (1.4)	3 (20.0)	12 (80.0)	32 (20–54)
Human cytomegalovirus	5 (1.4)	7 (1.0)	0.560	12 (1.1)	5 (41.7)	7 (58.3)	24 (0.3–37)
Enterovirus	8 (2.2)	2 (0.3)	0.002	10 (0.9)	8 (80.0)	2 (20.0)	4.5 (1–11)
Varicella zoster virus	Ò	6 (0.8)	0.090	6 (0.6)	Ò Í	6 (100)	35 (23–38)
Mumps virus	2 (0.6)	3 (0.4)	0.651	5 (0.5)	2 (40.0)	3 (60.0)	29 (14–53)
Plasmodium falciparum	1 (0.3)	3 (0.4)	0.799	4 (0.4)	1 (25.0)	3 (75.0)	17 (10.5–31.5)
Cryptococcus spp.	`0 ´	70 (9.9)	<0.001	70 (6.6)	О́	70 (100)	33 (27–41)

*Children were patients <15 years of age, and adults were patients \geq 15 years of age.

Appendix Table 9. Characteristics of patients with confirmed bacterial etiology in comparison with patients with no confirmed bacterial etiology, using univariate analysis*

	Patients with bacterial etiology,	Patients with no bacterial etiology,	p value,	p value,
Demographic				
Male, n = 1,050	117 (66.9)	540 (61.7)	0.199	
Age, n = 1,050, y, median (IQR)	23.0 (9–45)	24 (8–38)	0.291	
Age group, $n = 1,050$				0.220
<1 mo	2 (1.1)	21 (2.4)		
1 mo–< 1 y	21 (12.0)	86 (9.8)		
1–<5 y	6 (3.4)	67 (7.7)		
5–<15 y	25 (14.3)	124 (14.2)		
<u>≥</u> 15 y	121 (69.1)	577 (65.9)		
Distance from hospital, n = 1,046, km, median (IQR)	27 (9–56)	25 (7–92)	0.974	
Population density per km ² ,† n = 1,036, median (IQR)	334 (92–1285)	422 (91–2011)	0.463	
Occupation,‡ n = 594			0.064	
Farmer	27 (27.3)	78 (15.8)		
Work indoors	10 (10.1)	67 (13.5)		
Work outdoors	23 (23.2)	125 (25.3)		
Student	14 (14.1)	61 (12.3)		
Other	25 (25.3)	164 (33.1)		
History				
HIV seropositive, n = 692	6 (6.2)	107 (18.0)	0.004	
Diabetic, n = 840	10 (7.5)	14 (2.0)	<0.001	
Tuberculosis, n = 723	2 (1.9)	31 (5.0)	0.143	
Antibiotic before LP, n = 940	100 (62.5)	478 (61.3)	0.773	
Steroid use before LP, n = 845	7 (5.3)	50 (7.0)	0.472	
Alcohol excess,§ n = 584	44 (43.1)	202 (41.9)	0.819	
Pet (dog or cat) at home, n = 576	90 (88.2)	424 (89.5)	0.719	
Poultry at home, n = 533	81 (88.0)	394 (89.3)	0.716	
Pigs at home, $n = 409$	54 (81.8)	285 (83.1)	0.802	
Signs and symptoms				
Days of fever at admission, n = 1,043, median (IQR)	5 (3–8)	4 (1–7)	0.004	
Fever, $n = 1,044$	171 (97.7)	776 (89.3)	<0.001	
Headache,¶ n = 883	135 (91.2)	642 (87.4)	0.186	
Neck stiffness, $n = 1,049$	128 (73.1)	546 (62.5)	0.007	
Confusion, $n = 1.045$	103 (59.5)	498 (57.1)	0.555	

	Patients with	Patients with no		р
	bacterial etiology,	bacterial etiology,	p value,	value,
Characteristic	n = 175	n = 875	χ^2	Fisher
Drowsiness, n = 1,044	110 (63.6)	492 (56.5)	0.084	
Convulsions, n = 1,048	44 (25.3)	269 (30.8)	0.148	
GCS score, n = 997, median (IQR)	14 (11–15)	14 (11–15)	0.800	
GCS score <15,# n = 1,032	94 (54.0)	450 (52.5)	0.704	
Arthralgia, ¶ n = 883	27 (18.3)	112 (15.2)	0.360	
Myalgia, ¶ n = 883	75 (50.7)	340 (46.3)	0.326	
Rash, n = 1,043 Vomiting or diarrhea, n = 1,049	19 (10.9) 101 (58.1)	126 (14.5) 466 (53.3)	0.213 0.247	
Cough, $n = 1,049$	39 (22.4)	216 (24.7)	0.523	
Shortness of breath, $n = 1,049$	23 (13.2)	130 (14.9)	0.576	
Cough or shortness of breath, $n = 1.049$	50 (28.7)	281 (32.1)	0.381	
Respiration rate, $n = 1,020$, breaths/min, median (IQR)	23 (20–28)	22 (20–30)	0.089	
WHO clinical CNS infection,** n = 1,025	140 (80.9)	621 (72.9)	0.028	
WHO encephalitis,** n = 1,025	102 (59.0)	470 (55.2)	0.359	
WHO meningitis,** n = 1,025	138 (79.8)	594 (69.7)	0.008	
WHO meningoencephalitis,** n = 1,025	100 (57.8)	443 (52.0)	0.163	
Fever + no neck stiffness + GCS score <15 and/or seizures, n =	16 (9.3)	110 (12.9)	0.181	
1,025				
Fever + neck stiffness + GCS score of 15 + no seizures, n = 1,025	38 (22.0)	151 (17.7)	0.190	
Fever + neck stiffness + GCS score <15 and/or seizures, n = 1,025	86 (49.7)	360 (42.3)	0.071	
Fever + neck stiffness, n = 1,025 Fever + GCS score<15 and/or seizures, n = 1,025	124 (71.7) 102 (59.0)	511 (60.0) 470 (55.2)	0.004 0.359	
Peripheral blood analysis	102 (03.0)	470 (00.2)	0.009	
Total leukocyte count, n = 938, \times 10 ³ cells/mm ³ , median (IQR)	11.9 (8.2–16.4)	10.6 (7.5–14.2)	0.034	
Elevated leukocyte count, 11 = 938	84 (53.5)	360 (46.1)	0.090	
Low leukocyte count, $\uparrow\uparrow$ n = 938	7 (4.5)	38 (4.9)	0.828	
Hematocrit, $n = 934$, %, median (IQR)	37 (31.5–41)	38 (33–42)	0.049	
Anemia,†† n = 934	68 (43.9)	279 (35.8)	0.058	
Platelets, n = 640, \times 10 ³ cells/mm ³ , median (IQR)	220 (180-270)	218 (189–296)	0.604	
Thrombocytopenia,†† n = 640	12 (10.6)	41 (7.8)	0.320	
CRP, $n = 856$, mg/L, median (IQR)	64.4 (15.2–154.7)	16 (3.1–57.1)	<0.001	
Elevated CRP,†† n = 856	114 (79.7)	430 (60.3)	<0.001	
Creatinine, n = 770, μmol/L, median (IQR)	79.6 (61.9–106.1)	79.6 (53.0–106.1)	0.143	
Total bilirubin, n = 843, μmol/L, median (IQR)	6.8 (4.8–12.0)	5.1 (3.4–8.6)	<0.001	
ALP, n = 730, IU/L, median (IQR) ALT, n = 819, IU/L, median (IQR)	92.5 (69.5–161) 18 (11–38)	96 (66–156) 16 (11–28)	0.840 0.101	
AST, $n = 831$, IU/L , median (IQR)	48.5 (27–100)	46 (30–76)	0.303	
Blood glucose, $n = 977$, mmol/L, median (IQR)	5.5 (6.8–8.5)	5.2 (6.2–7.5)	<0.000	
Hyperglycemia, ±± n = 977	53 (32.3)	182 (22.4)	0.007	
Severe hyperglycemia,‡‡ n = 991	22 (13.4)	50 (6.2)	0.001	
CSF				
Turbid, $n = 984$	38 (23.2)	103 (12.6)	<0.001	
Hemorrhagic, n = 984	19 (11.6)	106 (12.9)	0.638	
Xanthochromia, n = 984	11 (6.7)	32 (3.9)	0.109	
Opening pressure, n = 962, H_2O cm, median (IQR)	20 (15.5–31.0)	20 (14–30)	0.219	
Elevated opening pressure, $\dagger \uparrow n = 962$	60 (37.3)	269 (33.6)	0.369	
Red cell count, n = 873, cells/mm ³ , median (IQR)	0 (0–10)	0 (0–5)	0.713	
Elevated red cells,†† n = 873 Total white cell count, n = 961, cells/mm ³ , median (IQR)	43 (28.7)	190 (26.3)	0.547 <0.001	
Elevated white cell count, $h = 961$, cells/mm ² , median (IQR)	115 (20–415) 129 (80.1)	30 (5–155) 590 (73.8)	<0.001 0.089	
Lymphocytes, n = 877, %, median (IQR)	15.1 (0–40)	25 (0–67)	0.089	
Elevated lymphocyte count, ++ n = 877	91 (62.3)	371 (50.8)	0.074 0.008	
Neutrophils, n = 877, %, median (IQR)	70 (14.1–91)	45 (0–79)	<0.000	
Elevated neutrophil count, †† n = 876	116 (80.0)	518 (70.9)	0.025	
CSF eosinophilia,§§ n = 986	2 (1.2)	44 (5.4)	-	0.023
Protein, n = 941, g/L, median (IQR)	0.8 (0.3–1.6)	0.5 (0.3–1.1)	<0.001	
Elevated protein,†† n = 941	108 (69.7)	483 (61.5)	0.053	
Glucose, n = 943, mmol/L, median (IQR)	3.4 (2.2–4.8)	3.6 (2.4–4.9)	0.600	
Decreased glucose,†† n = 943	51 (32.9)	226 (28.7)	0.291	
Decreased CSF:venus glucose ratio, †† n = 916	97 (64.2)	435 (56.9)	0.093	
Lactate, n = 954, mmol/L, median (IQR)	4 (2.4–7.4)	2.6 (1.8–4.2)	<0.001	
Elevated lactate, †† n = 970	132 (80.5)	505 (62.7)	<0.001	
Treatment post LP Antibiotic, n = 1,004	166 (06 E)	754 (00 6)	0.014	
Steroid, $n = 938$	166 (96.5)	754 (90.6) 187 (24.2)	0.011 0.388	
	35 (21 1)		11.11()()	
	35 (21.1)	101 (24.2)	0.000	
Outcome	, , , , , , , , , , , , , , , , , , ,			
	35 (21.1) 11 (7–17) 43 (27.9)	9 (5–14) 186 (25.6)	0.028 0.548	

	Patients with	Patients with no		р
	bacterial etiology,	bacterial etiology,	p value,	value,
Characteristic	n = 175	n = 875	χ^2	Fisher

*Values are no. (%) unless indicated otherwise. Bold values are statistically significant (p<0.05). Univariate analyses were performed to compare patients with confirmed bacterial infection (175, including patients with bacterial co-infection) to other patients (875, excluding patients with co-infection involving bacteria and virus or *Cryptococcus*). History or physical examination were taken into account for rash, confusion, neck stiffness, fever (history of fever or >37.5°C during physical examination). ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; CRP, C-reactive protein; CNS, central nervous system; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; IQR, interquartile range;

LP, lumbar puncture; TB, Mycobacterium tuberculosis; WHO, World Health Organization.

†Population density of the village of residence: Population densities per village were from population census 2005, recovered from Lao DECIDE info Web site (platform of Government of Lao PDR, www.decide.la). ‡Occupation: work indoors = teacher, government official, business, factory worker, accountant; work outdoors = driver, building worker, merchant, carpenter, soldier, mechanic; other: housewife, no job, monk, retired, singer, health worker.

§Data collected for children (<15 years old) were excluded for analysis.

Considered as not reliable, the data were excluded from analysis for children <3 years old.

#Including confused and disoriented. **WHO clinical CNS infection = fever with either GCS score <15, neck stiffness (history or examination), or history of seizure, patients with missing data for 1 of those criteria were not counted. WHO encephalitis = fever with GCS score <15 or history of seizure or both. WHO meningist = fever with GCS score <15 or neck stiffness or both. WHO meningoencephalitis = meeting both WHO encephalitis and WHO meningistis criteria. +†Elevated and low parameters = above or below normal ranges (Appendix Table 3), anemia: hematocrit below normal range. In elevated CSF white

cell count, were not taken into account the cases that could not be counted because of high turbidity.

##Hyperglycemia: blood glucose higher than 7.7 mmol/L, severe hyperglycemia: blood glucose higher than 11.1 mmol/L. §§Eosinophilia: CSF eosinophils >10%

Appendix Table 10. Estimation of the risk factors associated with bacterial infection, using multivariate logistic regression models

	% Missing	Complete case analysis, n = 532†			MICE, n = 1,043‡		
Factor	values	aOR	p value	95% CI	aOR	p value	95% CI
Diabetes§	20	4.26†	0.005†	1.54–11.79†	3.09‡	0.015‡	1.24-7.68‡
Total bilirubin§	19.7	0.98	0.849	0.84–1.16	0.99	0.944	0.85-1.16
C-reactive protein§	18.5	1.06†¶	0.001†	1.03–1.10†¶	1.08‡¶	<0.001‡	1.05–1.11‡¶
CSF protein§	10.4	0.95	0.504	0.80-1.11	1.00	0.943	0.91–1.09
CSF lactate§	9.1	3.88†¶	<0.001†	2.29–6.57†¶	3.51‡¶	<0.001 ‡	2.30 - 5.35‡¶
CSF white cell count§	8.5	1.00	0.675	1.00-1.00	1.00	0.821	1.00-1.00
Turbid CSF§	6.3	0.54	0.190	0.22-1.36	0.90	0.699	0.52-1.56
Fever	0.6	3.72†	0.039†	1.07–12.95†	3.87 ‡	0.011‡	1.36–11.06‡
Neck stiffness	0.1	1.08	0.793	0.62-1.88	1.21	0.341	0.81-1.81

*The factors that showed p<0.01 in univariate analysis were submitted to multivariate analysis. Some factors were excluded (e.g., HIV seropositivity), since the choice for patient testing was biased. Clinical meningitis was correlated with neck stiffness, neutrophils was correlated with white cell count, and hyperglycemia was correlated with diabetes (a model was run replacing diabetes with hyperglycemia or blood glucose, which turned out to be not significant). aOR, adjusted odds ratio; CSF, cerebrospinal fluid; MICE, multiple imputation by chained equation. †Complete case analysis was repeated with only significant factors (p<0.05) identified by stepwise approach (n = 607).

‡Final model with imputed values with only significant variables included (n = 1,043).

§Variables with imputed values. Other variables included in the imputation model: bacterial infection (outcome), sex, age, fever, and neck stiffness. The aOR for a 10-U increase in C-reactive protein or CSF lactate.

Appendix Table 11. Characteristics of patients with confirmed viral etiology in comparison with patients with no confirmed viral
etiology, using univariate analysis*

Characteristic	Patients with viral etiology, n = 172	Patients with no viral etiology, n = 867	p value, χ ²	p value Fisher
Demographic	····		70	
Male, $n = 1,039$	111 (64.5)	539 (62.2)	0.558	
Age, n = 1,039, y, median (IQR)	16 (7–28)	25 (8–41)	<0.001	
Age group, $n = 1,039$			<0.001	
<1 mo old	2 (1.2)	21 (2.4)		
1 mo–< 1 y old	9 (5.2)	98 (11.3)		
1–< 5 y old	21 (12.2)	52 (6.0)		
5–<15 y old	45 (26.2)	104 (12.0)		
<u>≥</u> 15 y old	95 (55.2)	592 (68.3)		
Distance from hospital, n = 1,035, km, median (IQR)	39 (8–133)	23 (7–76)	0.021	
Population density,† n = 1,025, per km ² , median (IQR)	433 (70–1,821)	403 (94–1,949)	0.378	
Occupation, \ddagger n = 583, adults only			0.012	
Farmer	14 (17.7)	91 (18.1)		
Work indoors	10 (12.7)	67 (13.3)		
Work outdoors	16 (20.3)	125 (24.8)		
Student	20 (25.3)	54 (10.7)		
Other	18 (24.1)	167 (33.1)		
History	a (a a)			
HIV seropositive, n = 681	8 (8.0)	94 (16.2)	0.034	
Diabetic, $n = 834$	1 (0.8)	23 (3.3)		0.155
History of TB, n = 717	3 (2.7)	26 (4.3)	0.000	0.603
Antibiotic use before LP, $n = 935$, (%)	109 (69.9)	469 (60.2)	0.023	
Steroid use before LP, n = 836	9 (6.9)	48 (6.8)	0.959	
Alcohol excess,§ n = 574	29 (36.7)	214 (43.2)	0.276	
Pet (dog or cat) at home, $n = 585$	81 (91.0)	428 (88.8)	0.537	
Poultry at home, n = 539	86 (89.6)	389 (89.2)	0.917	
Pigs at home, n = 404	70 (86.4)	264 (81.7)	0.319	
Signs and symptoms	- ()			
Days of fever at admission, $n = 1,032$, median (IQR)	5 (3–7)	4 (1–8)	0.285	
Fever, $n = 1,033$	162 (95.3)	775 (89.8)	0.024	
Headache,¶ n = 872	139 (90.9)	627 (87.2)	0.210	
Neck stiffness, n = 1,034	130 (75.6)	538 (62.1)	0.001	
Confusion, $n = 1,034$	114 (66.3)	483 (56.0)	0.013	
Drowsiness, $n = 1,033$	111 (64.9)	488 (56.6)	0.045	
Convulsions, $n = 1,037$	65 (37.8)	247 (28.6)	0.016	
GCS score, n = 986, median (IQR)	13 (10–15)	14 (11–15)	0.103	
GCS score <15,# n = 1,021	101 (59.4)	441 (51.8)	0.070	
Arthralgia, ¶ n = 872	20 (13.1)	119 (16.6)	0.286	
Myalgia,¶ n = 872	72 (47.1)	341 (47.4)	0.934	
Rash, $n = 1,032$	20 (11.7)	120 (13.9)	0.434	
Vomiting or diarrhea, $n = 1,038$	101 (58.7)	460 (53.1)	0.178	
Cough or shortness of breath, $n = 1,038$	47 (27.3)	280 (32.3)	0.197	
Cough, $n = 1,038$	35 (20.4)	216 (24.9)	0.199	
Shortness of breath, n = 1,038	20 (11.6)	132 (15.2)	0.221	
Respiratory rate, n = 1,009, breaths/min, median (IQR)	24 (20–32)	22 (20–28)	0.025	
WHO clinical CNS infection,** n = 1,014	143 (85.1)	611 (72.2)	<0.001	
WHO encephalitis,** n = 1,014	107 (63.7)	462 (54.6)	0.030	
WHO meningitis,** n = 1,014	140 (83.3)	586 (69.3)	<0.001	
WHO meningoencephalitis,** n = 1,014	104 (61.9)	437 (51.7)	0.015	
Fever + no neck stiffness + GCS score <15 and/or seizures, n =	17 (10.1)	107 (12.7)	0.361	
	00 (04 4)	440 (47 0)	0.040	
Fever + neck stiffness + GCS score of 15 + no seizures, n =	36 (21.4)	149 (17.6)	0.242	
1,014	00 (52 6)	255 (42.0)	0.006	
Fever + neck stiffness + GCS score <15 and/or seizures, n =	90 (53.6)	355 (42.0)	0.000	
1,014 Eaver L pack stiffness n = 1,014	106 (75 0)	504 (50 C)	<0.001	
Fever + neck stiffness, $n = 1,014$	126 (75.0)	504 (59.6)		
Fever + GCS score <15 and/or seizures, n = 1,014	107 (63.7)	462 (54.6)	0.030	
Peripheral blood analysis			0.000	
Total leukocyte count, n = 930, 10^3 cells/mm ³ , median (IQR)	11.6 (8.6–14.5)	10.7 (7.4–14.6)	0.296	
Elevated white cell count, \dagger † n = 930	84 (53.9)	359 (46.4)	0.089	
Low white cell count, $\uparrow\uparrow$ n = 930	6 (3.9)	38 (4.9)	0.568	
Hematocrit, n = 926, %, median (IQR)	39 (35–43.5)	38 (32.7–42)	0.003	
Anemia, $\dagger \dagger n = 926$	44 (28.2)	296 (38.4)	0.016	
Platelet, n = 635, 10 ³ count/mm ³ , median (IQR)	220 (200–299)	217 (180–290)	0.107	
Thrombocytopenia, $\dagger \dagger n = 635$	4 (3.5)	47 (9.1)	0.045	
CRP, n = 846, mg/L, median (IQR)	19.2 (4.7–57.2)	21.6 (3.5–79)	0.543	
Elevated CRP, †† n = 846	98 (64.9)	439 (63.2)	0.688	
Creatinine, n = 759, μmol/L, median (IQR)	70.7 (53.0–88.4)	79.6 (61.9–106.1)	0.031	
Total bilirubin, n = 834, μmol/L, median (IQR)	5.1 (3.4–8.7)	5.3 (3.4–9.6)	0.084	
	10E (7A 4AAE)	92 (66–160)	0.730	
ALP, n = 721, IU/L, median (IQR) ALT, n = 810, IU/L, median (IQR)	105 (74–144.5) 14 (10–23)	17 (11–31)	0.028	

	Patients with viral	Patients with no viral	p value.	p value
Characteristic	etiology, $n = 172$	etiology, n = 867	χ^2	Fisher
AST, n = 822, IU/L, median (IQR)	44.5 (28–68)	46 (29–82.5)	0.196	
Hyperglycemia, ±± n = 967	40 (24.0)	193 (24.1)	0.962	
Severe hyperglycemia, ± n = 967	12 (7.2)	60 (7.5)	0.888	
CSF				
Turbid, $n = 973$	21 (12.4)	117 (14.6)	0.471	
Hemorrhagic, n = 973	22 (13.0)	103 (12.8)	0.942	
Xanthochromia, n = 973	5 (3.0)	37 (4.6)	0.339	
Opening pressure, n = 953, H_2O cm, median (IQR)	20 (15–26.5)	20 (14–31)	0.534	
Elevated opening pressure, ++ n = 953	42 (24.9)	280 (35.7)	0.007	
Red cell count, $n = 864$, cells/mm ³ , median (IQR)	0 (0–5)	0 (0–5)	0.571	
Elevated red cell count, †† n = 864	39 (24.5)	194 (27.5)	0.443	
Total white cell count, n = 951, cells/mm ³ , median (IQR)	82.5 (25–275)	30 (5–190)	<0.001	
Elevated white cell count, ++ n = 951	141 (84.9)	574 (73.1)	0.001	
Lymphocytes, n = 867, %, median (IQR)	33.3 (2-71)	22 (0-58.5)	0.006	
Elevated lymphocyte count, ++ n = 867	106 (68.4)	354 (49.7)	<0.001	
Neutrophils, n = 867, %, median (IQR)	48.4 (19–83)	50 (0-83)	0.264	
Elevated neutrophil count, ++ n = 866	130 (83.9)	503 (70.8 [́])	0.001	
CSF eosinophilia,§§ n = 976	9 (5.3)	37 (4.6)	0.680	
Protein, n = 931, g/L, median (IQR)	0.65 (0.34–1.2)	0.55 (0.3–1.18)	0.400	
Elevated protein, †† n = 931	112 (66.3)	475 (62.3)	0.337	
Glucose, n = 933, mmol/L, median (IQR)	3.56 (2.5–4.56)	3.56 (2.33–5)	0.527	
Decreased glucose,†† n = 933	45 (26.6)	228 (29.8)	0.406	
Decreased CSF:venus glucose ratio, ++ n = 906	97 (58.8)	429 (57.9)	0.833	
Lactate, n = 945, mmol/L, median (IQR)	2.3 (1.8–3.4)	2.8 (1.9–4.9)	0.001	
Elevated lactate, †† n = 985	93 (56.0)	538 (67.7)	0.004	
Treatment post LP				
Treatment antibiotic, n = 993	163 (97.0)	746 (90.4)	0.005	
Treatment steroid, n = 930	38 (24.2)	183 (23.7)	0.887	
Outcome				
Days of hospitalization, n = 833, median (IQR)	10 (6–14)	9 (5–14)	0.425	
Mortality and discharged moribund, n = 878	23 (15.7)	207 (28.3)	0.001	
Delay between admission and LP, n = 996, d, median (IQR)	0 (0–2)	1 (0–3)	<0.001	

Delay between admission and LP, n = 996, d, median (IQR) 0 (0–2) 1 (0–3) **<0.001** *Values are no. (%) unless indicated otherwise. Bold values are statistically significant (p<0.05). Univariate analyses were performed to compare patients with confirmed viral infection (172, including patients with viral co-infection) to other patients (867, excluding patients with co-infection involving virus and bacteria or *Cryptococcus*). History or physical examination were taken into account for rash, confusion, neck stiffness, fever (history of fever or >37.5°C during physical examination). ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; CNS, central nervous system; CRP, C-reactive protein; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; IQR, interquartile range; LP, lumbar puncture; TB, *Mycobacterium tuberculosis*; WHO, World Health Organization.

†Population density of the village of residence: Population densities per village were from population census 2005, recovered from Lao DECIDE info website (platform of Government of Lao PDR, www.decide.la).

Cocupation: work indoors = teacher, government official, business, factory worker, accountant; work outdoors = driver, building worker, merchant, carpenter, soldier, mechanic; other: housewife, no job, monk, retired, singer, health worker. §Data collected for children (<15 years old) were excluded for analysis. ¶Considered as not reliable, the data were excluded from analysis for children <3 y old.

**WHO clinical CNS infection: fever with either GCS score<15, neck stiffness (history or examination), or history of seizure, patients with missing data for 1 of those criteria were not counted. WHO encephalitis = fever with GCS score <15 or history of seizure or both. WHO meningitis = fever with

GCS score <15 or neck stiffness or both. WHO meningoencephalitis = neeting both WHO encephalitis and WHO meningitis = never with ft=levated and low parameters = above or below normal ranges (Appendix Table 3), anemia: hematocrit below normal range. In elevated CSF white cell count, were not taken into account the cases that could not be counted because of high turbidity. ftHyperglycemia: blood glucose higher than 7.7 mmol/L, severe hyperglycemia: blood glucose higher than 11.1 mmol/L.

§§Eosinophilia: CSF eosinophils >10%.

Appendix Table 12. Estimation of the risk factors associated with viral infection, using multivariate logistic regression models*

	% Missing	Complete case analysis, n = 777†				1,035‡	
Factor	values	aOR	p value	95% CI	aOR	p value	95% CI
Hematocrit§	10.9	1.36†¶	0.023†	1.04–1.78†¶	1.43‡¶	0.007‡	1.10–1.85‡¶
CSF lactate§	9.0	0.29†¶	0.001†	0.14–0.61†¶	0.25‡¶	<0.001‡	0.12-0.51‡¶
CSF white cell count§	8.5	1.00	0.203	1.00-1.00	1.00	0.208	1.00-1.00
Elevated CSF opening pressure§	8.3	0.72	0.145	0.46-1.12	0.68	0.058	0.45-1.01
Days between admission and LP	0.3	0.87†	0.004†	0.79-0.96†	0.89‡	0.005‡	0.82-0.97‡
Neck stiffness	0.1	1.92	0.003	1.25-2.93	1.93 ±	0.001	1.31-2.84
Age	0	0.84†¶	0.002^{+}	0.76–0.94†¶	0.82±¶	<0.001±	0.74–0.91±¶

*The factors that showed p<0.01 in univariate analysis were submitted to multivariate analysis. Some factors were excluded: clinical meningitis, meningoencephalitis and clinical CNS infection that are correlated with neck stiffness, neutrophils and lymphocytes that are correlated with white cell count. aOR, adjusted odds ratio; CSF, cerebrospinal fluid; LP, lumbar puncture; MICE, multiple imputation by chained equation. †Complete case analysis was repeated with only significant factors (p<0.05) identified by stepwise approach (n = 839).

‡Final model with imputed values with only significant variables included (n = 1,035).

Variables with imputed values. Other variables included in the imputation model: viral infection (outcome), sex, age, neck stiffness, days between admission and LP.

¶aOR for a 10-U increase in hematocrit, CSF lactate or age.

Appendix Table 13. Distribution of patients with confirmed etiology according to clinical presentations compatible with CNS infection*

		Fever +	Fever +	Fever +					
		no neck	neck	neck					
		stiffness +	stiffness +	stiffness +					
		GCS	GCS	GCS					
		score <15	score of	score <15		GCS			
		and/or	15 + no	and/or	No CNS	score	Neck		
	All, n =	seizures,	seizures,	seizures,	infection,†	<15, n =	stiffness,	Seizures,	Fever,
Etiology	1,065	n = 127	n = 191	n = 453	n = 269	551	n = 683	n = 319	n = 962
Confirmed etiology	450 (42.3)	37 (29.1)	103 (53.9)	201 (44.4)	102 (37.9)	225 (40.8)	316 (46.3)	119	425
								(37.3)	(44.2)
Co-infection	37 (3.5)	4 (3.1)	11 (5.8)	11 (2.4)	11 (4.1)	13 (2.4)	23 (3.4)	9 (2.8)	36 (3.7)
Bacterial (including	175 (16.4)	16 (12.6)	38 (19.9)	86 (20.0)	33 (12.3)	94 (17.1)	128 (18.7)	44 (13.8)	171
bacterial co-infections)									(17.8)
Mycobacterium	20 (1.9)	1 (0.8)	2 (1.0)	14 (3.1)	3 (1.1)	15 (2.7)	17 (2.5)	2 (0.6)	19 (2.0)
tuberculosis									
Streptococcus	22 (2.1)	4 (3.1)	3 (1.6)	14 (3.1)	0	17 (3.1)	18 (2.6)	10 (3.1)	22 (2.3)
pneumoniae									
<i>Leptospira</i> spp.	25 (2.3)	2 (1.6)	6 (3.1)	11 (2.4)	6 (2.2)	12 (2.2)	17 (2.5)	5 (1.6)	25 (2.6)
Rickettsia spp.	24 (2.3)	1 (0.8)	3 (1.0)	14 (3.1)	6 (2.2)	14 (2.5)	17 (2.5)	4 (1.3)	24 (2.5)
Orientia tsutsugamushi	31 (2.9)	3 (2.4)	13 (6.8)	10 (2.2)	5 (1.9)	10 (1.8)	23 (3.4)	7 (2.2)	31 (3.2)
Other bacteria	48 (4.5)	4 (3.1)	9 (4.7)	21 (4.6)	13 (4.8)	23 (4.2)	32 (4.7)	15 (4.7)	45 (4.7)
Cryptococcus spp.	70 (6.6)	1 (0.8)	20 (10.5)	15 (3.3)	33 (12.3)	19 (3.4)	38 (5.6)	2 (0.6)	60 (6.2)
Viral (including viral co-	172 (16.2)	17 (13.4)	36 (18.8)	90 (19.9)	25 (9.3)	101 (18.3)	130 (19.0)	65 (20.4)	162
infections)									(16.8)
JEV	94 (8.8)	7 (4.7)	15 (7.9)	67 (14.8)	5 (1.9)	68 (12.3)	82 (12.0)	40 (12.5)	92 (9.6)
Dengue virus	27 (2.5)	5 (3.9)	5 (2.6)	11 (2.4)	5 (1.9)	17 (3.1)	18 (2.6)	9 (1.6)	24 (2.5)
HCMV	12 (1.1)	1 (0.8)	2 (1.0)	4 (0.9)	4 (1.5)	6 (1.1)	6 (0.9)	5 (1.6)	10 (1.0)
HSV1/2	15 (1.4)	3 (2.4)	3 (1.6)	4 (0.9)	4 (1.5)	7 (1.3)	8 (1.2)	7 (2.2)	13 (1.4)
Enterovirus	10 (0.9)	0	5 (2.6)	3 (0.7)	2 (0.7)	2 (0.4)	8 (1.2)	2 (0.6)	10 (1.0)
VZV	6 (0.6)	0	2 (1.0)	0	3 (1.1)	0	2 (0.3)	0	6 (0.6)
Mumps	5 (0.5)	1 (0.8)	2 (1.0)	0	2 (0.7)	0	3 (0.4)	1 (0.3)	4 (0.4)
Malaria	4	0	2 (1.0)	2 (0.4)	0	2 (0.4)	4 (0.6)	1 (25)	4 (100)

*In the table are reported number of patients (percentage). Syndromic classification was done only for patients with data available for all criteria: fever (history of fever or >37.5°C during physical examination), neck stiffness (history or examination), GCS score and history of seizure = 1,040 patients. Among the 25 patients with missing data, 1 was confirmed for *S. pneumoniae*, 1 for *Streptococcus agalactiae*, 1 for *Cryptococcus* sp.1 for *Dengue virus*, 1 for HCMV, 1 for HSV1/2, 1 for VZV. Fever = history of fever or documented fever (>37.5°C), neck stiffness = history or at examination, Seizures = history of seizures, GCS score <15 = GCS score total <15 and when GCS score total is missing = confused or disoriented. CNS, central nervous system; GCS, Glasgow coma scale; HCMV, human cytomegalovirus; HSV, herpes simplex virus; JEV, Japanese encephalitis virus; VZV, varicella zoster virus.

+No CNS infection = patients who don't meet criteria for World Health Organization clinical CNS infection (fever with either GCS score<15, neck stiffness, or history of seizures).

Characteristic	Patients who died/discharged moribund, n = 235	Patients discharged alive and well, n = 658	p value, γ^2	p value Fisher
Demographic	1101100110, 11 = 253	000	χ	1 131101
Patient number, n = 893	235 (26.3)	658 (73.7)		
Male, $n = 893$	147 (62.6)	407 (61.9)	0.850	
Age, n = 893, y, median (IQR)	28 (9–45)	21 (7–36)	0.007	
Age group, $n = 893$	20 (0 10)	(0.364	
<1 mo old	4 (1.7)	14 (2.1)	0.001	
1 mo-<1 y old	24 (10.2)	71 (10.8)		
1–<5 y old	16 (6.8)	53 (8.1)		
5–<15 y old	26 (11.1)	103 (15.7)		
≥15 y	165 (70.2)	417 (63.4)		
Distance from hospital, n = 889, km, median (IQR)	27.3 (7.2–99.7)	23.8 (6.7–80.2)	0.307	
Population density, \uparrow n = 879, per km ² , median (IQR)	444.1 (92.9–1,652.7)	403.1 (91.5–1,949.4)	0.004	
Occupation, for adults, t n = 504			0.002	
Farmer	26 (18.31)	68 (18.8)		
Work indoors	18 (12.7)	47 (13.0)		
Work outdoors	38 (26.8)	86 (23.8)		
Student	6 (4.2)	58 (16.0)		
Other	54 (38.0)	103 (28.5)		
History				
HIV seropositive, n = 583	18 (12.8)	53 (12.0)	0.806	
Diabetic, $n = 727$	10 (5.2)	11 (2.1)	0.026	
History of tuberculosis, $n = 635$	9 (5.6)	13 (2.7)	0.088	
Antibiotic use before LP, n = 811, %	131 (60.9)	361 (60.6)	0.926	
Steroid use before LP, n = 725	21 (11.2)	33 (6.1)	0.022	
Alcohol excess, $\S n = 482$	65 (46.8)	152 (44.3)	0.625	
Pet (dog or cat) at home, $n = 493$	120 (90.9)	319 (88.4)	0.423	
Poultry at home, $n = 462$	103 (87.3)	305 (88.7)	0.688	
Pigs at home, $n = 348$	75 (86.2)	212 (81.2)	0.290	
Signs and symptoms		(0)	0.200	
Days of fever at admission, $n = 891$, median (IQR)	4 (2–8)	4 (2–7)	0.971	
Fever, $n = 891$	220 (93.6)	591 (90.1)	0.105	
Headache, ¶ n = 746	164 (82.8)	497 (90.7)	0.003	
Neck stiffness, n = 892	163 (69.4)	432 (65.8)	0.314	
Confusion, $n = 890$	179 (76.2)	356 (54.2)	<0.001	
Drowsiness, n = 889	141 (60.5)	384 (58.5)	0.598	
Convulsions, n = 891	79 (33.6)	199 (30.3)	0.352	
GCS score, n = 847, median (IQR)	11 (8–15)	15 (12–15)	<0.001	
GCS score <15, $\#$ n = 882	170 (73.6)	319 (49.0)	<0.001	
Arthralgia, \P n = 746	25 (12.6)	87 (15.9)	0.273	
Myalgia, ¶ n = 746	84 (42.4)	272 (49.6)	0.082	
Rash, $n = 889$	40 (17.1)	80 (12.2)	0.062	
Vomiting or diarrhea, n = 892	115 (48.9)	376 (57.2)	0.028	
Cough or shortness of breath, $n = 892$	83 (35.3)	197 (30.0)	0.130	
Cough, $n = 892$	63 (26.8)	151 (23.0)	0.239	
Shortness of breath, $n = 892$	54 (23.0)	80 (12.2)	<0.001	
Respiration rate, $n = 872$, breaths/min, median (IQR)	22.5 (20–30)	22 (20–30)	0.204	
WHO clinical CNS infection, ** $n = 878$	200 (86.6)	470 (72.6)	<0.001	
WHO encephalitis,** n = 878	170 (73.6)	342 (52.9)	<0.001	
WHO meningitis,** $n = 878$	196 (84.9)	452 (69.9)	<0.001	
WHO meningoencephalitis,** n = 878	166 (71.9)	324 (50.1)	<0.001	
Fever + no neck stiffness + GCS score<15 and/or	42 (18.2)	64 (9.9)	0.001	
eizures, n = 878 Fever + neck stiffness + GCS score of 15 + no seizures, n	30 (13.0)	128 (19.8)	0.021	
= 878 Fever + neck stiffness + GCS score<15 and/or seizures, n	128 (55.4)	278 (43.0)	0.001	
= 878	150 (60 4)	106 (60.0)	0 4 9 4	
Fever + neck stiffness, $n = 878$	158 (68.4) 170 (73.6)	406 (62.8)	0.124	
Fever + GCS score <15 and/or seizures, n = 878 Peripheral blood analysis	170 (73.6)	342 (52.9)	<0.001	
Total leukocyte count, n = 829, 10 ³ cells/mm ³ , median IQR)	10.8 (8.0–15.6)	10.8 (7.8–14.3)	0.848	
Elevated leukocyte count, †† n = 829	106 (49.1)	289 (47.2)	0.625	
Low leukocyte count, $\uparrow\uparrow$ n = 829	8 (3.7)	25 (4.1)	0.809	
Hematocrit, $n = 826$, %, median (IQR)	38 (32–41)	38 (33.6–42)	0.133	
Anemia, $n = 826$	92 (43.0)	210 (34.3)	0.133 0.023	
	· · · ·	. ,		
	210 (180_290)			
Platelets, n = 595, 10 ³ count/mm ³ , median (IQR)	210 (180–280) 14 (9 5)	220 (190–290) 35 (7 8)	0.339	
	210 (180–280) 14 (9.5) 33.5 (9.3–106.3)	220 (190–290) 35 (7.8) 15.9 (2.9–58.8)	0.339 0.532 <0.001	

Appendix Table 14. Characteristics of patients who died or were discharged moribund in comparison with patients who were discharged alive and well*

$\begin{array}{c c} \mbox{Creatinine, n = 640, μmol/L, median (IQR)} & 79.6 (61.9-132.6) & 79.6 (53.0-97.2) & 0.018 \\ \mbox{Total bilirubin, n = 701, μmol/L, median (IQR)} & 5.8 (3.6-10.3) & 5.1 (3.4-10.3) & 0.538 \\ \mbox{ALP, n = 600, IU/L, median (IQR)} & 93 (64.5-140) & 96 (68-161.5) & 0.113 \\ \mbox{ALT, n = 681, IU/L, median (IQR)} & 17 (11-31) & 16 (10-28) & 0.065 \\ \mbox{AST, n = 690, IU/L, median (IQR)} & 50 (33-99) & 42 (27-73) & 0.002 \\ \mbox{Hyperglycemia, $\ddagger n = 836} & 72 (32.7) & 140 (22.7) & 0.003 \\ \mbox{Severe hyperglycemia, $\ddagger n = 836} & 25 (11.4) & 41 (6.7) & 0.026 \\ \mbox{CSF} \\ \mbox{Turbid, n = 840} & 34 (15.0) & 88 (14.3) & 0.795 \\ \mbox{Hemorrhagic, n = 840} & 37 (16.4) & 66 (10.8) & 0.028 \\ \mbox{Xanthochromia, n = 840} & 12 (5.3) & 25 (4.1) & 0.438 \\ \mbox{Opening pressure, n = 823, H}_2O cm, median (IQR) & 20 (14-33.3) & 20 (14-29) & 0.219 \\ \mbox{Elevated opening pressure, † n = 823} & 81 (37.5) & 194 (32.0) & 0.138 \\ \mbox{Red cell count, n = 740, cells/mm^3, median (IQR)} & 53 (27.0) & 148 (27.2) & 0.964 \\ \mbox{Total white cell count, † n = 822} & 160 (74.4) & 466 (76.8) & 0.487 \\ \mbox{Lymphocytes, n = 746, %, median (IQR)} & 25 (0-67) & 26 (0-63) & 0.656 \\ \mbox{Elevated lymphocyte count, † n = 746} & 99 (50.8) & 301 (54.6) & 0.353 \\ \end{tabular}$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lue,
Total bilirubin, n = 701, μ mol/L, median (IQR)5.8 (3.6-10.3)5.1 (3.4-10.3)0.538ALP, n = 600, IU/L, median (IQR)93 (64.5-140)96 (68-161.5)0.113ALT, n = 681, IU/L, median (IQR)17 (11-31)16 (10-28)0.065AST, n = 690, IU/L, median (IQR)50 (33-99)42 (27-73)0.002Hyperglycemia,‡‡ n = 83672 (32.7)140 (22.7)0.003Severe hyperglycemia,‡‡ n = 83625 (11.4)41 (6.7)0.026CSFTurbid, n = 84034 (15.0)88 (14.3)0.795Hemorrhagic, n = 84037 (16.4)66 (10.8)0.028Xanthochromia, n = 84012 (5.3)25 (4.1)0.438Opening pressure, n = 823, H ₂ O cm, median (IQR)20 (14-33.3)20 (14-29)0.219Elevated opening pressure, \uparrow n = 82381 (37.5)194 (32.0)0.138Red cell count, n = 740, cells/mm³, median (IQR)0 (0-5)0 (0-5)0.886Elevated red cells, \uparrow n = 74053 (27.0)148 (27.2)0.964Total white cell count, \uparrow n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0-67)26 (0-63)0.656Elevated lymphocyte count, \dagger n = 74699 (50.8)301 (54.6)0.353	ner
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Hyperglycemia, $\ddagger n = 836$ 72 (32.7)140 (22.7)0.003Severe hyperglycemia, $\ddagger n = 836$ 25 (11.4)41 (6.7)0.026CSFTurbid, n = 84034 (15.0)88 (14.3)0.795Hemorrhagic, n = 84037 (16.4)66 (10.8)0.028Xanthochromia, n = 84012 (5.3)25 (4.1)0.438Opening pressure, n = 823, H ₂ O cm, median (IQR)20 (14–33.3)20 (14–29)0.219Elevated opening pressure, $\dagger n = 823$ 81 (37.5)194 (32.0)0.138Red cell count, n = 740, cells/mm³, median (IQR)0 (0–5)0 (0–5)0.886Elevated red cells, $\dagger n = 740$ 53 (27.0)148 (27.2)0.964Total white cell count, $t = 822$, cells/mm³, median (IQR)30 (5–185)45 (10–240)0.080Elevated white cell count, $\dagger n = 822$ 160 (74.4)466 (76.8)0.487Lymphocytes, $n = 746$, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, $\dagger t n = 746$ 99 (50.8)301 (54.6)0.353	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Turbid, n = 840 $34 (15.0)$ $88 (14.3)$ 0.795 Hemorrhagic, n = 840 $37 (16.4)$ $66 (10.8)$ 0.028 Xanthochromia, n = 840 $12 (5.3)$ $25 (4.1)$ 0.438 Opening pressure, n = 823, H ₂ O cm, median (IQR) $20 (14-33.3)$ $20 (14-29)$ 0.219 Elevated opening pressure, $\dagger t n = 823$ $81 (37.5)$ $194 (32.0)$ 0.138 Red cell count, n = 740, cells/mm³, median (IQR) $0 (0-5)$ $0 (0-5)$ 0.886 Elevated red cells, $\dagger t n = 740$ $53 (27.0)$ $148 (27.2)$ 0.964 Total white cell count, $t = 822$, cells/mm³, median (IQR) $30 (5-185)$ $45 (10-240)$ 0.080 Elevated white cell count, $\dagger n = 822$ $160 (74.4)$ $466 (76.8)$ 0.487 Lymphocytes, n = 746, %, median (IQR) $25 (0-67)$ $26 (0-63)$ 0.656 Elevated lymphocyte count, $\dagger t n = 746$ $99 (50.8)$ $301 (54.6)$ 0.353	
Hemorrhagic, n = 840 $37 (16.4)$ $66 (10.8)$ 0.028 Xanthochromia, n = 84012 (5.3)25 (4.1)0.438Opening pressure, n = 823, H ₂ O cm, median (IQR)20 (14–33.3)20 (14–29)0.219Elevated opening pressure, †† n = 82381 (37.5)194 (32.0)0.138Red cell count, n = 740, cells/mm³, median (IQR)0 (0–5)0 (0–5)0.886Elevated red cells, †† n = 74053 (27.0)148 (27.2)0.964Total white cell count, † n = 822, cells/mm³, median (IQR)30 (5–185)45 (10–240)0.080Elevated white cell count, †† n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, †† n = 74699 (50.8)301 (54.6)0.353	
Xanthochronia, n = 84012 (5.3)25 (4.1)0.438Opening pressure, n = 823, H2O cm, median (IQR)20 (14–33.3)20 (14–29)0.219Elevated opening pressure, $\dagger \dagger$ n = 82381 (37.5)194 (32.0)0.138Red cell count, n = 740, cells/mm³, median (IQR)0 (0–5)0 (0–5)0 (0–5)Elevated red cells, $\dagger \dagger$ n = 74053 (27.0)148 (27.2)0.964Total white cell count, n = 822, cells/mm³, median (IQR)30 (5–185)45 (10–240)0.080Elevated white cell count, $\dagger \dagger$ n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, $\dagger \dagger$ n = 74699 (50.8)301 (54.6)0.353	
Opening pressure, n = 823, H2O cm, median (IQR)20 (14–33.3)20 (14–29)0.219Elevated opening pressure, $\uparrow \uparrow$ n = 82381 (37.5)194 (32.0)0.138Red cell count, n = 740, cells/mm³, median (IQR)0 (0–5)0 (0–5)0 (0–5)Elevated red cells, $\uparrow \uparrow$ n = 74053 (27.0)148 (27.2)0.964Total white cell count, n = 822, cells/mm³, median (IQR)30 (5–185)45 (10–240)0.080Elevated white cell count, $\uparrow \uparrow$ n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, $\uparrow \uparrow$ n = 74699 (50.8)301 (54.6)0.353	
Elevated opening pressure, $\dagger \dagger n = 823$ 81 (37.5)194 (32.0)0.138Red cell count, $n = 740$, cells/mm³, median (IQR)0 (0–5)0 (0–5)0 (0–5)Elevated red cells, $\dagger \dagger n = 740$ 53 (27.0)148 (27.2)0.964Total white cell count, $n = 822$, cells/mm³, median (IQR)30 (5–185)45 (10–240)0.080Elevated white cell count, $\dagger n = 822$ 160 (74.4)466 (76.8)0.487Lymphocytes, $n = 746$, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, $\dagger \dagger n = 746$ 99 (50.8)301 (54.6)0.353	
Red cell count, n = 740, cells/mm³, median (IQR) $0(0-5)$ $0(0-5)$ $0(0-5)$ 0.886 Elevated red cells, †† n = 74053 (27.0)148 (27.2) 0.964 Total white cell count, n = 822, cells/mm³, median (IQR)30 (5-185)45 (10-240) 0.080 Elevated white cell count, †† n = 822160 (74.4)466 (76.8) 0.487 Lymphocytes, n = 746, %, median (IQR)25 (0-67)26 (0-63) 0.656 Elevated lymphocyte count, †† n = 74699 (50.8)301 (54.6) 0.353	
Elevated red cells, $\dagger \dagger$ n = 74053 (27.0)148 (27.2)0.964Total white cell count, n = 822, cells/mm³, median (IQR)30 (5–185)45 (10–240)0.080Elevated white cell count, $\dagger \dagger$ n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, $\dagger \dagger$ n = 74699 (50.8)301 (54.6)0.353	
Total white cell count, n = 822, cells/mm³, median (IQR) 30 (5–185) 45 (10–240) 0.080 Elevated white cell count, $\dagger \uparrow n = 822$ 160 (74.4)466 (76.8) 0.487 Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63) 0.656 Elevated lymphocyte count, $\dagger \uparrow n = 746$ 99 (50.8)301 (54.6) 0.353	
Elevated white cell count, \dagger † n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count, \dagger † n = 74699 (50.8)301 (54.6)0.353	
Elevated white cell count,†† n = 822160 (74.4)466 (76.8)0.487Lymphocytes, n = 746, %, median (IQR)25 (0–67)26 (0–63)0.656Elevated lymphocyte count,†† n = 74699 (50.8)301 (54.6)0.353	
Elevated lymphocyte count, ++ n = 746 99 (50.8) 301 (54.6) 0.353	
Neutrophils, n = 746, %, median (IQR) $50 (0-82.6) 50 (0-83) 0.526$	
Elevated neutrophil count,†† n = 746 140 (71.8) 408 (74.1) 0.540	
CSF eosinophilia,§§ n = 845 7 (3.1) 33 (5.3) 0.176	
Protein, n = 805, g/L, median (IQR) 0.74 (0.33–1.63) 0.57 (0.32–1.08) 0.013	
Elevated protein,†† n = 805 143 (67.5) 384 (64.8) 0.478	
Glucose, n = 807, mmol/L, median (IQR) 3.81 (2.25–5.61) 3.61 (2.5–4.78) 0.391	
Decreased glucose,†† n = 807 70 (33.0) 156 (26.2) 0.058	
Decreased CSF:venous glucose ratio, †† n = 783 122 (60.4) 326 (56.1) 0.289	
Lactate, n = 814, mmol/L, median (IQR) 3.5 (2.3–6.2) 2.6 (1.8–4.3) <0.001	
Elevated lactate,†† n = 827 175 (78.5) 372 (61.6) <0.001	
Treatment post LP	
Treatment antibiotic, n = 874 214 (94.3) 586 (90.6) 0.085	
Treatment steroid, n = 845 63 (28.3) 135 (21.7) 0.048	
Delay in LP, n = 862	_
Days between admission and LP, median (IQR) 1 (0-2) 1 (0-2) 0.640	
>2 d between admission and LP 56 (24.2) 147 (23.3) 0.772	

*Values are no. (%) unless indicated otherwise. Univariate analysis was performed to compare patients who died (235, including discharge moribund) to patients who were discharged alive (658). Bolded values are statistically significant. History or physical examination were taken into account for: rash, confusion, neck stiffness, fever (history of fever or >37.5°C during physical examination). ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; CNS, central nervous system; CRP, C-reactive protein; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; IQR, interquartile range; LP, lumbar puncture; TB, *Mycobacterium tuberculosis*; WHO, World Health Organization. †Population density of the village of residence: Population densities per village were from population census 2005, recovered from Lao DECIDE info website (platform of Government of Lao PDR, www.decide.la).

‡Occupation: work indoors = teacher, government official, business, factory worker, accountant; work outdoors = driver, building worker, merchant, carpenter, soldier, mechanic; other: housewife, no job, monk, retired, singer, health worker.

§Data collected for children (<15 years old) were excluded for analysis.

Considered as not reliable, the data were excluded from analysis for children <3 y old.

#Including confused and disoriented. **WHO clinical CNS infection: fever with either GCS score <15, neck stiffness (history or examination), or history of seizure, patients with missing data for 1 of those criteria were not counted. WHO encephalitis = fever with GCS score<15 or history of seizure or both. WHO meningitis = fever with GCS score <15 or neck stiffness or both. WHO meningoencephalitis = meeting both WHO encephalitis and WHO meningitis criteria.

++Elevated and low parameters = above or below normal ranges (Appendix Table 3), anemia: hematocrit below normal range. In elevated CSF white cell count, were not taken into account the cases that could not be counted because of high turbidity.

##Hyperglycemia: blood glucose higher than 7.7 mmol/L, severe hyperglycemia: blood glucose higher than 11.1 mmol/L.

§§Eosinophilia: CSF eosinophils >10%.

Appendix Table 15	. Estimation of the risk factors associated with death*
-------------------	---

	% Missing	Complete	case analysis	, n = 515†	MICE, n = 950‡			
Factors	values	aOR	p value	95% CI	aOR	p value	95% CI	
Aspartate aminotransferase§	20.9	1.0	0.098	1.0–1.0	1.0	0.058	1.0–1.0	
C-reactive protein§	18.5	1.0†	0.011†	1.0–1.0†	1.0	0.052	1.0–1.0	
Hyperglycemia	6.9	0.9	0.824	0.5–1.6				
Adult occupation§#	9.8							
Work inside		0.7†	0.398†	0.3–1.7†	1.1	0.900	0.5–2.3	
Work outside		0.8†	0.526†	0.4–1.6†	1.1	0.749	0.6–2.2	
Student		0.2†	0.010†	0.1–0.7†	0.3	0.049	0.1–1.0	
Other		1.2†	0.588†	0.6–2.4†	1.3	0.341	0.7–2.5	
Child		0.5†	0.018†	0.2–0.9†	0.7	0.365	0.3–1.6	
CSF lactate§	9.0	1.1†	0.009†	1.0–1.1†	1.1‡	0.00 1‡	1.0–1.1‡	
GCS score§	5.2	0.8†	<0.001†	0.8–0.9†	0.8 ‡	<0.001 ‡	0.8–0.9 ‡	
Viral infection	2.4	0.5	0.035	0.2–1.0	0.4 ‡	0.00 1‡	0.3–0.7 ‡	
Village population density	1.3	1.0	0.698	1.0–1.0	1.0	0.850	1.0–1.0	
Bacterial infection	1.4	0.6	0.191	0.3–1.2	0.6	0.036	0.3–1.0	
Confusion	0.5	2.1	0.026	1.1-4.2	1.0	0.888	0.6–1.7	
Headache**	0.1	0.6	0.162	0.3–1.2	0.6	0.123	0.3–1.1	
Shortness of breath	0.1	1.3	0.375	0.7–2.6	1.4	0.145	0.9–2.4	
Age	0	1.0	0.308	1.0–1.0	1.0	0.995	1.0–1.0	

*The factors that showed p<0.01 in univariate analysis were submitted to multivariate analysis. Some factors were excluded: clinical central nervous system infection, meningitis, encephalitis, menignoencephalitis that are correlated with GCS score. aOR, adjusted odds ratio; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; MICE, multiple imputation by chained equation. †Complete case analysis was repeated with only significant factors (p<0.05) identified by stepwise approach (n = 572). ‡Final model with imputed values with only significant variables included (n = 984). §Variables with imputed values, plus mortality (including moribund, as outcome, 16.2% of missing values). Other variables included in the imputation model: sex, age, headache, confusion, GCS score, shortness of breath, village population density.

¶Hyperglycemia: blood glucose higher than 7.7 mmol/L.

#With farmer as reference group. **Data provided only for adults and children \geq 3 y old.

Appendix Table 16. In patients with confirmed etiology, the proportion of patients with etiology treatable by ceftriaxone or doxycycline among patients presenting with criteria consistent with bacterial meningitis*

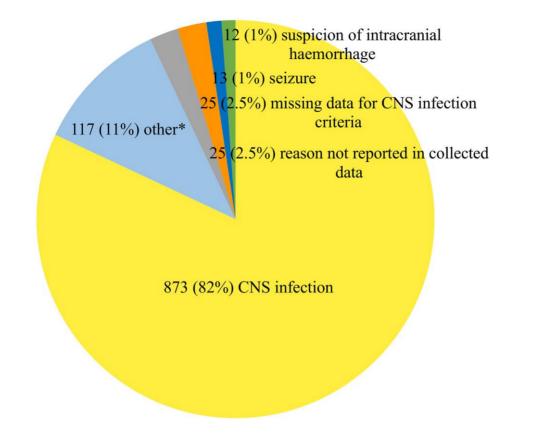
	Etiology	Etiology	Etiology	Etiology	
	treatable by	treatable by	treatable by	treatable by	
	ceftriaxone	ceftriaxone	doxycycline	doxycycline	Other
	(not including	(including	(not including	(including	confirmed
	Leptospira),	Leptospira),	Leptospira),	Leptospira),	etiologies,
Patients with confirmed etiology and:	no. (%)	no. (%)	no. (%)	no. (%)	no. (%)
Neck stiffness,† n = 316	41 (13.0)	60 (19.0)	46 (14.6)	63 (19.9)	213 (67.4)
GCS score <15, n = 225	34 (15.1)	47 (20.9)	27 (12.0)	40 (17.8)	152 (67.6)
Elevated CRP, n = 265	44 (16.6)	60 (22.6)	36 (13.6)	51 (19.2)	171 (64.5)
CSF turbid, n = 80	27 (33.8)	31 (38.8)	6 (7.5)	9 (11.5)	45 (54.3)
Elevated CSF lactate, n = 298	44 (14.8)	63 (21.4)	44 (14.8)	62 (20.8)	193 (64.8)
Elevated CSF protein, n = 281	44 (15.7)	57 (20.3)	32 (11.4)	43 (15.3)	195 (69.4)
Decreased CSF glucose, n = 138	23 (16.7)	26 (18.8)	12 (8.7)	15 (10.9)	101 (73.2)
Decreased CSF:venous glucose ratio, n = 253	40 (15.8)	49 (19.4)	27 (10.7)	35 (13.8)	179 (70.8)
Elevated CSF white cell count, n = 341	44 (12.9)	64 (18.8)	39 (11.4)	57 (16.7)	241 (70.7)
Combinations, <u>></u> 1 of:					
Abnormal CSF lactate, protein, glucose, WCC, CSF	53 (12.7)	76 (18.2)	54 (12.9)	75 (17.9)	291 (69.6)
turbid, $n = 418$					
Elevated CRP, CSF lactate, protein, turbid, n = 427	56 (13.1)	82 (19.2)	59 (13.8)	83 (19.4)	289 (67.7)
Elevated CRP, CSF lactate, protein, n = 425	56 (13.2)	82 (19.3)	58 (13.6)	82 (19.3)	288 (67.8)
Elevated CRP, CSF lactate, n = 385	54 (14.0)	78 (20.3)	56 (14.5)	78 (20.3)	254 (66.0)
Elevated CRP, CSF protein, n = 382	54 (14.1)	75 (19.6)	49 (12.8)	68 (17.8)	261 (68.3)
Elevated CRP, GCS score<15, n = 348	50 (14.4)	72 (20.7)	49 (14.1)	70 (20.1)	229 (65.8)
Elevated CSF protein, GCS score <15, n = 348	49 (14.1)	68 (19.5)	44 (12.6)	61 (17.5)	239 (68.7)
GCS score <15, elevated CSF lactate, n = 361	48 (13.3)	69 (19.1)	50 (13.9)	70 (19.4)	244 (67.6)
GCS score <15, elevated CSF lactate, protein, n =	52 (12.9)	75 (18.6)	53 (13.1)	74 (18.3)	279 (69.1)
404				-	

*GCS score <15 = GCS score total <15 and when GCS score total is missing = confused or disoriented CRP, C-reactive protein; CSF, cerebrospinal fluid; GCS, Glasgow coma scale; WCC, white cell count. *Neck stiffness: history or examination.

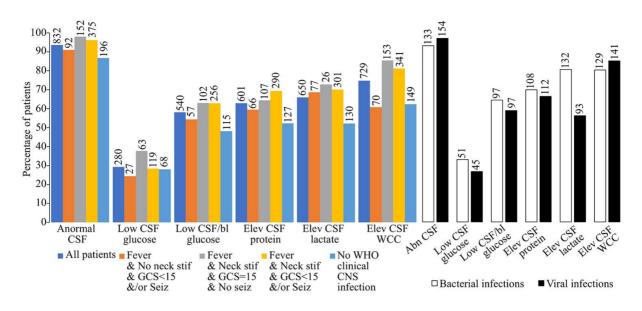
Reference WHO 2003 guidelines	Study	Clinical syndrome Encephalitis	$\frac{\text{Definition}}{\text{Acute onset of fever and } \geq 1 \text{ of: change in mental status}}$
(56)		Encophanto	(including confusion, disorientation, coma, or inability to talk defined here as Glasgow Coma Score <15); new onset of
		Meningitis	seizures (excluding simple febrile seizures). A history of fever or documented fever (>38.5°C) and ≥1 of: neck stiffness, altered consciousness, or other meningeal signs.
Olsen et al. 2015 (<i>4</i> 2)	Prospective study in 7 hospitals in Thailand, 2003– 2005	Enrolment	Acute brain dysfunction requiring hospitalization (altered mental status, focal central neurologic findings, or new onse of seizures), within 14 d or 7 d after admission and documented fever (≥38°C) or history of fever or hypothermia (≤35°C) and clinical indication for LP as determined by patient's physician
		Encephalitis	And ≥1 of: abnormal neuroimaging; abnormal EEG; CSF pleocytosis (≥15 leukocytes/mm ³ for ≤6 weeks of age, ≥5 leukocytes/mm ³ for >6 weeks of age).
Polage and Cohen 2016 (<i>57</i>)	Review on epidemiology and diagnosis for meningitis and	Meningoencephalitis Encephalitis	Encephalitis with CSF pleocytosis and neck stiffness Altered mental status and ≥2 of: fever; seizure; focal neurologic findings; CSF pleocytosis (≥5 CSF leukocytes/mm ³); abnormal neuroimaging; abnormal EEG (refer to Venkatesan et al. 2013) (<i>58</i>).
	encephalitis in developed countries	Meningitis	No clear definition. Patients with meningitis typically presen with some combination of fever, headache, meningeal irritation, and altered mental status.
Farantola et al. 2014 <i>59</i>)	Review on burden of JEV in Mekong region	Acute encephalitis syndrome	Fever and ≥1 of (of sudden onset [<7 d]): altered mental status; motor deficit; sensory deficit; seizures of new onset (excluding simple febrile seizures).
Venkatsen et al. 2013 (58)	Consensus statement of the international Encephalitis consortium	Meningoencephalitis Encephalitis and encephalopathy	And meningism (nuchal rigidity) Major Criterion (required): Patients presenting to medical attention with altered mental status (defined as decreased o altered level of consciousness, lethargy or personality change) lasting ≥24 h. And minor criteria (2 required for possible encephalitis; ≥3 required for probable or confirmed encephalitis): Documented fever ≥38°C (100.4°F) within the 72 h before or after presentation; generalized or partial seizures not fully attributable to a preexisting seizure disorder; new onset of focal neurologic findings; CSF leukocytes ≥5 leukocytes/mm ³ ; abnormality of brain parenchyma on neuroimaging suggestive of encephalitis that is either new from prior studies or appears acute in onset; abnormality on electroencephalography that is consistent with encephalitis and not attributable to another cause.
Glaser et al. 2003 (<i>60</i>), Glaser et al. 2006 (<i>61</i>)	Prospective study in California, 1998 to 2005	Encephalitis	Encephalopathy (depressed, or altered level of consciousness lasting ≥24 h, lethargy, or change in personality) and ≥1 of: fever; seizure; focal neurologic findings; CSF pleocytosis; electroencephalography;
Kolski et al. 1998 (<i>62</i>)	Prospective study at Toronto hospital, 1994–1995	Encephalitis	neuroimaging findings consistent with encephalitis. Depressed or altered level of consciousness ≥24 h and included lethargy, extreme irritability, or a significant change in personality or behavior and ≥2 of: fever; seizure; focal neurologic findings; >5 CSF WCC/µL; electroencephalogram findings compatible with encephalitis abnormal results of neuroimaging.
Kupila et al. 2006 (63)	Prospective study at Finland hospital, 1999–2003	Aseptic meningitis Encephalitis	Symptoms or signs of meningeal inflammation, without evidence of brain parenchymal involvement and first CSF WCC >5 per μL and CSF bacterial culture negative. ≥1 of altered consciousness or personality; epileptic
Mailles et al. 2009 (<i>64</i>)	National multicenter prospective study in France, 2007	Encephalitis	seizures; focal neurologic signs and either >5 CSF WCC/µL neuroradiological finding; EEG findings. Acute onset of illness and ≥1 of: ≥4 CSF WCC/µL; CSF protein ≥40 mg/dL and fever and ≥1 of: decreased consciousness; seizure; altered mental status; focal
Granerod et al. 2010 65)	Prospective study in 24 hospitals in England, 2005 2006	Encephalitis	neurologic signs. Altered consciousness ≥24 h and ≥2 of: fever; seizure; foca neurologic findings; ≥5 CSF WCC/µL; EEG findings; abnormal neuroimaging.
Ho Dang Trung et al. 2012 (<i>46</i>)	Prospective study in 13 hospitals in Vietnam, 2007 2010	Viral encephalitis and meningitis	Fever and ≥1 of: meningeal signs (neck stiffness, Kernig sign, Brudzinski sign); change in mental status; new onset of seizure. And ≥10 CSF WCC/μL (and 2 of: protein ≤1 g/L, normal glucose, lactate <4 mmol/L) or clear CSF (when <10 CSF WCC/μL)

Reference	Study	Clinical syndrome	Definition
		Bacterial meningitis	Fever and ≥1 of: meningeal signs (neck stiffness, Kernig sign, Brudzinski sign); altered consciousness and ≥10 CSF WCC/µL (and 2 of: protein >1 g/L, glucose <2.2 mmol/L, lactate >4 mmol/L) or turbid CSF (when <10 CSF WCC/µL).
Xie et al. 2015 (<i>44</i>)	Prospective study in 12 hospital in China, 2007–2012	Acute meningitis and encephalitis	≥1 of: fever; headache; vomiting And meningeal sign or change in mental status
Srey et al. 2002 (52)	Prospective study in 1 hospital in Cambodia, October 1999 September 2000	Encephalitis syndrome	Fever and ≥1 of: altered consciousness; focal neurologic sign.
Touch et al. 2009 (51)	JEV sentinel surveillance in children in 6 Cambodian hospital, 2006 2008	Meningoencephalitis	Fever and ≥1 of: neck stiffness; altered consciousness; another meningeal sign.
Han et al. 2016 (<i>53</i>)	Retrospective study in single hospital in Korea, March 2008 to Feb 2013	Aseptic meningitis	Fever with headache, meningeal irritation, and ≥5 CSF WCC/µL and normal CSF glucose and negative bacterial culture and not altered consciousness or seizure, or focal neurologic deficit.
Horwood et al. 2007 (<i>50</i>)	Prospective study from July 2010 to December 2013 at Kantha Bopha and Jayavarman VII, children hospitals in Phnom Penh and Siem Reap respectively	Acute meningoencephalitis	Fever >38°C, or febrile episode reported within the previous month. And CSF abnormalities (>4 WCC/μL or CSF protein >0.4g/L) and at least 1 of: confusion; prolonged, altered consciousness; seizure; central neurologic deficiency.

*In 2015, we reviewed articles published in English in the Medline database in the past 20 y, using the terms "encephalitis," "meningitis," "CNS syndrome" "CNS infection" "central nervous system syndrome" "central nervous system infection." We selected article presenting prospective study of patients or review, where the criteria for definition of encephalitis and/or meningitis were clearly specified. CSF, cerebrospinal fluid; EEG, electroencephalogram; JEV, Japanese encephalitis virus; LP, lumbar puncture; WCC, white cell count; WHO, World Health Organization.


Test	Gene	Oligo	5'→3' sequence
Cryptococcus PCR	CAP59	Forward primer	CCTTGCCGAAGTTCGAAACG
for typing		Reverse primer	AATCGGTGGTTGGATTCAGTGT
Neisseria meningitidis	CtrA	Forward primer	GCTGCGGTAGGTGGTTCAA
serotyping		Reverse primer 1	TTGTCGCGGATTTGCAACTA
Quadruplex qPCR		Reverse primer 2	TTGCCGCGGATTGGCCACCA
(22)		Probe	6FAM-CATTGCCACGTGTCAGCTGCACAT
	SiaD _B	Forward primer	ATTATACAGCCTGCTCATCTCTATATGC
		Reverse primer	TCCCTTCATCAATTAAATGAGTCGTA
		Probe	6FAM-TTACAGGCCACTACTCCT-NFQ-MGB
	Ply	Forward primer	TGCAGAGCGTCCTTTGGTCTAT
	-	Reverse primer	CTCTTACTCGTGGTTTCCAACTTGA
		Probe	VIC-TGGCGCCCATAAGCAACACTCGAA
	Internal control	Forward primer	CCCTTGTCGAGCATTTAAAAGAG
		Reverse primer	TTCATGTATGGTTCATCCTCGAA
		Probe	Cy5-CATCGAGGCCAACTCGAAACATCGG-BHQ
Haemophilus	Hib <i>cap</i> locus	Forward primer	TGTTCGCCATAACTTCATCTTAGC
influenzae typing,		Reverse primer	CTTACGCTTCTATCTCGGTGATTAATAA
(20)		Probe	JOE-CACAAAACTTCTCATTCTTCGAGCCTA-BHQ1
	bexA	Forward primer	CTGAATTRGGYGATTATCTTTATGA
		Reverse primer	ACAATCAAAYTCAACHGAAAGHGA
		Probe	CY3-AGGGATGAAAGCYCGRCTTGCAT-BHQ2
	ompP2	Forward primer	GGTGCATTCGCAGCTTCAG
		Reverse primer	GATTGCGTAATGCACCGTGTT
		Probe	6FAM-TTGTTTATAACAACGAAGGGACTAACGT-BHQ1
Leptospira spp.	rrs	Forward primer	CCCGCGTCCGATTAG

ppendix Table 18. List of primers and probes used for the detection or the typing of pathogens by PCR


Test	Gene	Oligo	5'→3' sequence
		Reverse primer	
Nicocorio moningitidio	otrA	Probe Forward primar	6FAM-CTCACCAAGGCGACGATCGGTAGC-BHQ1
<i>Niesseria meningitidis</i> gPCR	ctrA	Forward primer Reverse primer	GCTGCGGTAGGTGGTTCAA TTGTCGCGGATTTGCAACTA
		Probe	FAM-CATTGCCACGTGTCAGCTGCACAT-BHQ1
H. influenzae qPCR	bexA	Forward primer	GGCGAAATGGTGCTGGTAA
	DUXA	Reverse primer	GGCCAAGAGATACTCATAGAACGTT
		Probe	HEX-CACCACTCATCAAACGAATGAGCGTGG-BHQ1
Streptococcus	lytA	Forward primer	ACGCAATCTAGCAGATGAAGCA
oneumoniae qPCR	,jo (Reverse primer	TCGTGCGTTTTAATTCCAGCT
		Probe	ROX-GCCGAAAACGCTTGATACAGGGAG-BHQ2
Streptococcus. suis	cps2J	Forward primer	GGTTACTTGCTACTTTTGATGGAAATT
qPCR	0,020	Reverse primer	CGCACCTCTTTTATCTCTTCCAA
		Probe	6FAM-TCAAGAATCTGAGCTGCAAAAGTGTCAAATTGA-TAMRA
S. pneumoniae typing	Cps serotype 1	Forward primer	CTATAGAAGGTCTACATCAGGTTC
qPCR		Reverse primer	TTTCTGTCAGATACGGCTTAC
		Probe	HEX-TCT[+T]CA[+A]TG[+C]GT[+A]GT[+C]TGC-BHQ1
	Cps serotype 3	Forward primer	ATGTTATTACACTCCTGTTCCTG
		Reverse primer	TCTAGGCGTCCATACTGTATC
		Probe	FAM-AGA[+A]CT[+G]TA[+A]TA[+T]CA[+C]TCTGCGA-BHQ1
	Cps serotype 4	Forward primer	TATTTCTAGGGTAATAACTGATTCTAAAAC
		Reverse primer	CTCCTAAATCATCTATTATTCCTGAAC
		Probe	Cy5-CTG[+C]CT[+C]TG[+A]AT[+A]TG[+C]TGAAT-BHQ2
	Cps serotype 5	Forward primer	TCCGAACGAAGATATTTGGTG
		Reverse primer	ATATAGAATTCCCCTCATGAACAC
		Probe	ROX-ACC[+A]CA[+A]CA[+T]CC[+T]CA[+A]TCAAC-BHQ2
	Cps serotype 6	Forward primer	TATTATTCTTTAGGGAATGTGTATACTG
	A/B	Reverse primer	ATATAACCACGCTGTAAAACTC
		Probe	HEX-CAA[+T]AC[+C]AA[+T]TA[+C]AC[+C]AAAGTCT-BHQ1
	Cps serotype 7	Forward primer	CCTTATAAATTTTGTGACTATAGACCTG
	A/F	Reverse primer	CCTAGTAAGACATCTGTGTCAC
		Probe	FAM-AAC[+C]CC[+A]GT[+A]AT[+C]AT[+A]ACCC-BHQ1
	Cps serotype 9	Forward primer	GTTAGTTGCTTCTTACAGGAAATAC
	A/L/N/V	Reverse primer	AAATTCATATTCCCACTCATTGTATG
	_	Probe	Cy5-ACT[+T]CC[+A]TC[+A]GT[+A]AG[+C]AGTTT-BHQ2
	Cps serotype	Forward primer	TCTATATACAAAGAGGCTCCAATG
	14	Reverse primer	ACCTGTATATCTTACACCATAACTAG
	_	Probe	ROX-AAA[+T]CC[+G]TC[+C]CA[+G]TC[+T]AAC-BHQ2
	Cps serotype	Forward primer	TCGATTTAGTAATCCCTGAAAC
	18 B/C	Reverse primer	GATAATCAAATTTACCTTTCCAATC
		Probe	HEX-TCA[+G]AT[+G]TT[+A]AA[+G]ACTACC-BHQ1
	Cps serotype	Forward primer	TGTTTGTTTTTGTGTCTGGTTTTTC
	19 A	Reverse primer	
	A	Probe	ROX-TCT[+T]TG[+T]TG[+C]TC[+T]TT[+C]TT[+C]TTCT-BHQ2
	Cps serotype	Forward primer	TCGGACACTAGGAGTTACTG
	19 F	Reverse primer	
	0	Probe	FAM-ACA[+T]AC[+A]TA[+C]CA[+A]CT[+A]GA[+C]CAA-BHQ1
	Cps serotype	Forward primer	GAACGGTAGAGATGCCTTTAC
	23	Reverse primer	
O riantia	47 LD	Probe	Cy5-CAA[+C]TA[+A]CC[+C]AA[+C]AT[+A]AC[+C]ATTT-BHQ2
Orientia toutoucomuchi	47-kD	Forward primer	AACTGATTTTATTCAAACTAATGCTGCT
tsutsugamushi		Reverse primer	
Dickottoio onn	17kDa	Probe Forward primer	6FAM-TGGGTAGCTTTGGTGGACCGATGTTTAATCT-TAMRA
<i>Rickettsia</i> spp.	TKDa	Reverse primer	GGGCGGTATGAAYAAACAAG CCTACACCTACTCCVACAAG
		Probe	6FAM-CCGAATTGAGAACCAAGTAATGC-TAMRA
D tunhi	omnP		TGGTATTACTGCTCAACAAGCT
R. typhi	ompB	Forward primer Reverse primer	CAGTAAAGTCTATTGATCCTACACCA
Rickettsia sp.	17kDa	Probe Forward primer 1	6FAM-CGCGATCGTTAATAGCAGCACCAGCATTATCGCG-BHQ ACTTTACAAAAATTCTAAAAAACCATATACT
heminested PCR	IINDa	Forward primer 2	GCTCTTGCAGCTTCTATGTTACA
		Reverse primer	CATTGTCCGTCAGGTTGGCG
Pan-dengue qPCR	3'NC	Forward primer	AGGACYAGAGGTTAGAGGAGA
an achgue yr on	3 NG	Reverse primer	CGYTCTGTGCCTGGAWTGAT
		Probe	6FAM-ACAGCATATTGACGCTGGGARAGACC-TAMRA
Dengue 1 qPCR	Capsid	Forward primer	ATACCYCCAACAGCAGGAATT
	Japaiu	Reverse primer	AGCATRAGGAGCATGGTCAC
		Probe	6FAM-TTGGCTAGATGGRGCTCATTCAAGAAGAAT-TAMRA
	5'NC-capsid	Forward primer	TGGACCGACAAGACAGACTCATCAAGAAGAATTAMIKA
Dengue 2 qPCR	o no-capsio	Reverse primer	CGYCCYTGCAGCATTCCAA
			6FAM-CGCGAGAGAAACCGCGTGTCRACTGT-TAMRA
		Droho	
	Consid	Probe Forward primer	
Dengue 3 qPCR	Capsid	Probe Forward primer Reverse primer	AAGACGGGAAAACCGCGTGTCKACTGT-TAWKA AAGACGGGAAAACCGTCTATCAA TTGAGAATCTCTTCGCCAACTG

Test	Gene	Oligo	5'→3' sequence
Dengue 4 qPCR	Capsid	Forward primer	CCATCCCACCRACAGCAGG
		Reverse primer	CAAGATGTTCAGCATGCGGC
		Probe	6FAM-ATGGGGACAGTTRAAGAAAAAYAAGGCCAT-TAMRA
Pan-enterovirus	5' NC	Forward primer	CCCCTGAATGCGGCTAATCC
PCR		Reverse primer	ATTGTCACCATAAGCAGCCA
		Probe	6FAM-CANGGACACCCAAAGTAGTCGGTTCC-TAMRA†
nfluenzavirus A	Matrix	Forward primer	GGACTGCAGCGTAGACGCTT‡
SYBR Green RT-		Reverse primer	CATYCTGTTGTATATGAGGCCCAT
PCR or qPCR		Probe	6FAM-CTCAGTTATTCTGCTGGTGCACTTGCCA-TAMRA
Influenzavirus B	Hemagglutinin	Forward primer	AAATACGGTGGATTAAAYAAAAGCAA§
SYBR Green RT-		Reverse primer	CCAGCAATAGCTCCGAAGAAA
PCR or qPCR		Probe	6FAM-CACCCATATTGGGCAATTTCCTATGGC-TAMRA
Panflavivirus SYBR	Nonstructural	Forward primer 1	TGYRTBTAYAACATGATGGG
Green RT-PCR	protein 5	Forward primer 2	ATHTGGTWYATGTGGYTDGG
		Reverse primer	GTGTCCCAICCNGCNGTRTC P
HSV1 and HSV2	pol	Forward primer	CATCACCGACCCGGAGAGGGAC
PCR		Reverse primer	GGGCCAGGCGCTTGTTGGTGTA
		Probe	6FAM-CCGCCGAACTGAGCAGACACCCGCGC-TAMRA
HSV1 qPCR	Glycoprotein D	Forward primer	CGGCCGTGTGACACTATCG
		Reverse primer	CTCGTAAAATGGCCCCTCC
		Probe	6FAM-CCATACCGACCACACCGACGAACC-TAMRA
HSV2 qPCR	Glycoprotein G	Forward primer	CGCTCTCGTAAATGCTTCCCT
		Reverse primer	TCTACCCACAACAGACCCACG
		Probe	6FAM-CGCGGAGACATTCGAGTACCAGATCG-TAMRA
Varicella zoster virus	pol	Forward primer	GGTTAAACGTTTGAATCCATCC
PCR		Reverse primer	CAGCAGACTTTCTCGAACGT
		Probe	6FAM-ATGCCACCTTTACAGTTGGAGGAA-TAMRA
West Nile virus qPCR	3'NC	Forward primer	CAGACCACGCTACGGCG
		Reverse primer	CTAGGGCCGCGTGGG
		Probe	6FAM-TCTGCGGAGAGTGCAGTCTGCGAT-TAMRA
T4 phage qPCR	rIIA	Forward primer	CCATCCATAGAGAAAATATCAGAACGA
		Reverse primer	CGCTGGGAAAAGAGGAATTATTTA#
		Probe	VIC-AACCAGTAATTTCATCTGCTTCTGATGTGAGGC-TAMRA
MS2 phage qPCR	Replicase	Forward primer	CTCTGAGAGCGGCTCTATTGGT
		Reverse primer	GTTCCCTACAACGAGCCTAAATTC
		Probe	VIC-TCAGACACGCGGTCCGCTATAACGA-TAMRA
Mumps virus qPCR	Fusion	Forward primer	TCTCACCCATAGCAGGGAGTTATAT
		Reverse primer	GTTAGACTTCGACAGTTTGCAACAA
		Probe	6FAM-AGGCGATTTGTAGCACTGGATGGAACA-TAMRA
Human	pp65	Forward primer	GCAGCCACGGGATCGTACT
cytomegalovirus	11.55	Reverse primer	GGCTTTTACCTCACACGAGCATT
PCR		Probe	6FAM-CGCGAGACCGTGGAACTGCG-TAMRA
Measles virus qPCR	N3	Forward primer	TGGCATCTGAACTCGGTATCAC
		Reverse primer	TGTCCTCAGTAGTATGCATTGCAA
		Probe	6FAM-CCGAGGATGCAAGGCTTGTTTCAGA-TAMRA
Tick-borne	3'NC	Forward primer	GGAMGRACMGATGAATACAT
encephalitis virus	0.10	Reverse primer	GYGCYTCYTTCCAYTGCA ⁵
PCR		Probe	6FAM-CTCTGGACAGTGTGATGATGATGA-TAMRA
Henipahvirus qPCR	Nucleocapsid	Forward primer	TTCTTYGCRACYATCAGATT
	. tabloodupoid	Reverse primer	ATTTCTCTGTAGAGYAGCATCA
		Probe	6FAM-TTCCAGAGTGAYCTCAAYACCATCAAA-TAMRA
Enterovirus reverse	VP1	RT primer 1	GTYTGCCA
ranscription for	vr I	RT primer 2	GAYTGCCA
yping (40)		RT primer 3	CCRTCRTA
עסד) פיייקע		RT primer 4	RCTYTGCCA
Enterovirus typing	VP1	Forward primer 1	GCi-ATG-YTi-GGi-ACi-CAY-RT
	VFI	Reverse primer 1	CiC-CiG-GiG-GiA-YRW-ACA-T
(40)	VP1	Forward primer 2	CCA-GCA-CTG-ACA-GCA-GYN-GAR-AYN-GG
	VFI	Reverse primer 2	
Entorovirus	VP1	Forward primer 2	TAC-TGG-ACC-ACC-TGG-NGG-NAY-RWA-CAT CCA-GCA-CTG-ACA-GCA
Enterovirus sequencing (40)	VPT		
		Reverse primer	TAC-TGG-ACC-ACC-TGG

replaced by N. #The sequences published in original publications are wrong. They are the reverse complement of the right primers, in this table.

Appendix Figure 1. Distribution of indications for lumbar puncture. *Other reasons include headache, confusion, neck stiffness, beriberi, lupus, suspicion of Guillain Barré syndrome, hepatic encephalopathy, diabetes with coma. Lumbar puncture was unsuccessful and cerebrospinal fluid could not be collected for 40 (3.7%) patients. CNS, central nervous system.

Appendix Figure 2. Percentage of patients with abnormal CSF parameters according to clinical presentations, viral and bacterial infections. No CNS infection indicates patients who don't meet criteria for WHO clinical CNS infection (fever with either GCS score <15, neck stiffness, or history of seizure). Patients with >1 of elevated CSF WCC, decreased glucose, elevated CSF protein, or elevated CSF lactate are presented on left of histograms as "abnormal CSF." Frequency of each criteria alone are also presented as well as decrease CSF: blood glucose. In total, 832 patients (93.6%) had abnormal CSF (elevated CSF WCC and/or low CSF glucose and/or elevated CSF lactate and/or elevated CSF protein), significantly more frequently in patients presenting with pure meningitis (98.1%, p = 0.026) and significantly less frequent in patients presenting without criteria for WHO clinical CNS infection (86.7%, p = 0.001). Two hundred eighty (29.3%) patients had low CSF glucose, significantly more frequent in patients presenting with pure meningitis (37.7% p = 0.030). Five hundred forty (58.1%) patients had low CSF/blood glucose ratio, significantly less frequent in patients presenting without criteria for clinical WHO clinical CNS infection (48.1%, p = 0.005). Six hundred and one (62.9%) patients had elevated CSF protein, significantly less frequent in patients presenting without criteria for WHO clinical CNS infection (52.3%, p = 0.003). Six hundred fifty (66%) patients had elevated CSF lactate, significantly less frequent in patients presenting without criteria for clinical WHO clinical CNS infection (52.2%, p<0.001) and in patients with viral infection (56%, p<0.001), and significantly more frequent in patients with bacterial infection (80.5%, p<0.001). Seven hundred twenty-nine (74.8%) patients had elevated CSF WCC, significantly less frequent in patients presenting with pure encephalitis (60.9%, p = 0.001) and in patients presenting without criteria for WHO clinical CNS infection (62.3%, p<0.001), and significantly more frequent in patients presenting with pure meningitis (85.5%, p = 0.002) and in patients presenting with meningoencephalitis (81.2%, p = 0.009). See Appendix Table 3 for reference ranges for laboratory variables. abn, abnormal; bl, blood; CSF, cerebrospinal fluid; elev, elevated; GCS, Glasgow coma scale; seiz, seizure; stif, stiffness; WCC, white cell count; WHO, World Health Organization.