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With regard to fully harvesting the potential of big data, pub-
lic health lags behind other fields. To determine this poten-
tial, we applied big data (air passenger volume from interna-
tional areas with active chikungunya transmission, Twitter 
data, and vectorial capacity estimates of Aedes albopictus 
mosquitoes) to the 2017 chikungunya outbreaks in Europe 
to assess the risks for virus transmission, virus importa-
tion, and short-range dispersion from the outbreak foci. We 
found that indicators based on voluminous and velocious 
data can help identify virus dispersion from outbreak foci 
and that vector abundance and vectorial capacity estimates 
can provide information on local climate suitability for mos-
quitoborne outbreaks. In contrast, more established indica-
tors based on Wikipedia and Google Trends search strings 
were less timely. We found that a combination of novel and 
disparate datasets can be used in real time to prevent and 
control emerging and reemerging infectious diseases.

Many sectors of society have taken full advantage of 
new opportunities provided by big data, but public 

health has not (1). Although electronic health records have 
long been used in surveillance, novel applications of big 
data are rare. Internet search query data from Google or 
Wikipedia have been applied to anticipate influenza epi-
demics but are hampered by several limitations, including 
specificity and granularity (2–4). More recently, crowd-
sourcing of symptoms through emails, text messages, or 
tweets has been explored, and outbreaks have been tracked 
by scanning high-volume surveillance systems (5,6). How-
ever, when it comes to fully harvesting the potential of big 
data, public health still lags behind other fields. Using chi-
kungunya as a case study, we illustrate how big data can 
help tackle emerging infectious diseases through preven-
tion, detection, and response.

A key driver of the emergence and spread of vec-
torborne diseases is human mobility (7–10), yet little is 
known about the epidemiologic consequences of mobil-
ity patterns at different spatial scales within the context 
of vectorborne diseases. A main obstacle to studying the 
complex interactions between human hosts, pathogens, 
and vectors has been the limited availability of spatio-
temporal datasets for analyzing human mobility patterns. 
Prior research relied on low-resolution mobile phone re-
cords, such as call and messaging logs from mobile phone 
networks (11–13), for which biases were notable (14,15). 
Furthermore, use of mobile phone data for tracking human 
mobility is likely to be fraught with privacy concerns and 
data access restrictions (15).

Recently, social media has emerged as an alternative 
source of real-time, high-resolution geospatial data on a 
large scale (1,15). Use of this unique aspect of publicly 
available social media data to study the human dimensions 
of the introduction and spread of emerging infectious dis-
eases has not been explored to its fullest extent. In areas 
where risk for virus importation and onward transmission 
is heightened, such knowledge can inform outbreak pre-
paredness and response planning by pinpointing receptive 
areas where proactive countermeasures should be imple-
mented in a timely fashion (16,17).

The impediments to using big data in public health are 
not only the size of the databases but also the complexity 
of their processing. The challenges include 3 main dimen-
sions: volume, velocity, and variety (18–20). Volume calls 
for statistical sampling; velocity, for instant access to near 
real-time transaction data; and variety, for management of 
nonaligned data structures. We illustrate how big data can 
be used to monitor the introduction and spread of the 2017 
chikungunya outbreak in Europe by tackling these chal-
lenges (18–20).

To assess risk for virus importation from international 
areas with active chikungunya transmission, we extracted air 
passenger volume from large-scale aviation data. To quantify 
the risk for short-range dispersion (defined as the potential for 
onward transmission and spread of chikungunya virus from 
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the initial outbreak foci to other areas during transmission 
season), we used a mining algorithm to process quasi–real-
time, geolocated Twitter activity data and computed mobility 
patterns of users. We have previously shown that mobility 
data from Twitter users is predictive of disease spread (21). 
We then estimated the seasonal vectorial capacity of Aedes 
albopictus mosquitoes to transmit chikungunya virus and 
linked it with human mobility patterns. We further comple-
mented these data with Internet and information search ac-
tivities related to chikungunya infection, vectors, and clinical 
signs and symptoms collected from Wikipedia and Google 
Trends. Last, we estimated the empirical basic reproduction 
number (R0) from the outbreaks and compared these numbers 
with our model predictions of epidemic potential based on 
climate conditions. More detail on our methods is provided 
in Appendix 1 (https://wwwnc.cdc.gov/EID/article/25/6/18-
0138-App1.pdf). 

Climate Suitability: Vectorial Capacity
The vectorial capacity of Ae. albopictus mosquitoes to 
transmit chikungunya virus in areas of Europe where the 
vector is established (17), such as the outbreak zones in 
France and Italy, was estimated to be high in July and 
August but lower in September and October. Estimates 
of suitability were low in October for most areas, except 
those in southern Italy and Greece and southeastern Spain 
(Figure 1). Overall, warmer than average temperatures led 
to a substantial increase in vectorial capacity during the 
study period (June–October 2017) (Appendix 2 Figure 1, 

https://wwwnc.cdc.gov/EID/article/25/6/18-0138-App2.
pdf). Using empirical data from the outbreaks in Italy 
(22), we estimated R0 to be 2.28 (95% CI 2.01–2.59) for 
the Anzio region, 3.54 (95% CI 2.62–4.97) for the Rome 
region, and 3.11 (95% CI 2.16–4.79) for the Calabria re-
gion (Figure 2).

Long-Range Importation: Air Passenger Volume
On average, ≈50,000 air passenger-journeys (1 passen-
ger flight, including all legs of travel) were taken each 
month from areas with active chikungunya transmission 
worldwide to the outbreak zones (Figure 3). Specifically, 
in August, 56,300 passengers from outbreak zones were 
estimated to arrive in Rome, 6,484 in Nice, and 5,629 in 
Marseille. The passenger-journey volume into Europe 
when the outbreak started in June is shown in Appendix 
2 Figure 2. The countries with the highest number of de-
parting passengers in August were Thailand (352,332 pas-
sengers), Brazil (255,439 passengers), and India (301,298 
passengers). According to molecular epidemiology, the 
genome sequence of a chikungunya virus isolate from the 
Lazio region of Italy revealed the East/Central/South Af-
rican lineage, Indian Ocean sublineage, which is similar 
to that of recent sequences from Pakistan and India (23). 
We also extracted air passenger-journey data for flights 
from the outbreak zones in southeastern France and cen-
tral Italy to other areas in Europe (Figure 3). The top 5 
destinations with the highest volume were the larger met-
ropolitan areas of Europe, most of which were outside 
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Figure 1. Vectorial capacity estimates based on average temperature conditions in Europe with stable populations of Aedes albopictus 
mosquitoes around chikungunya outbreak zones, Italy and France, July–October 2017. Heavy outlines indicate the outbreak areas. The 
vectorial capacity translates to an average basic reproduction number in the range of 2–3 in Anzio and Rome and in the range of 3–4 in 
Calabria during the months of July and August for an infectious period of 4 days.
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the boundaries of areas where the vector is known to be 
present (Figure 4). However, high flight connectivity was 
observed from the outbreak zones to Barcelona (Spain) 
and Catania and Palermo (Italy).

Short-Range Dispersion: Geocoded Tweets
The spatiotemporal analysis of geocoded Twitter data 
showed strong human mobility from Lazio (Figure 4) and 
the Var department in France (Appendix 2 Figure 3) to-
ward several larger cities where Ae. albopictus mosquitoes 
are present. The top 10 estimates of mobility out of the 2 
outbreak zones of Var and Lazio showed the strongest pat-
tern for potential dispersion of chikungunya virus not only 
into the areas geographically close to the outbreak zones 
but also to several relatively large cities in Italy, France, 
and Spain (Table). The monthly mobility patterns during 
the study period varied between months; for example, the 
vacation month of August showed a stronger mobility pat-
tern out of Var to areas not in direct connectivity, most no-
tably to Rome (Appendix 2 Figure 4). When we contrasted 

the mobility proximities between the 2 outbreak zones, we 
observed the highest proximities within countries (Figure 
4; Appendix 2 Figure 3). Although the Var and Lazio out-
break zones experienced high mobility proximity to Bar-
celona, Lazio was also highly connected to southern Italy 
(e.g., Catania and Palermo), in close proximity to the chi-
kungunya outbreak in the Calabria area, which was also 
observed in the International Air Transport Association 
(IATA) flight passenger data (Figures 3, 4). In Italy, cases 
were first notified in Anzio at the end of June, followed 
by notifications in Rome later in July, and in Calabria in 
early August in order of temporal appearance (Figure 2). 
In our mobility analysis, we identified the mobility links to 
all outbreak regions (Figure 4), with the exception of the 
Emilia-Romagna region, although the region neighboring 
Emilia-Romagna was positive in our analysis. The mobility 
patterns correlated more strongly to the outbreak regions in 
July and August.

A closer look at the Lazio outbreak zone in Italy re-
vealed strong connectivity between Anzio (where the first 
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Figure 2. Notified chikungunya 
cases in the Anzio (A), Rome 
(B), and Calabria (C) regions 
and basic reproduction number 
(R0) estimates of outbreaks, 
June–October 2017, Italy.
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cases in Italy were confirmed) and Rome (where a higher 
number of cases were notified) (Figure 5). We compiled the 
top 10 mobility proximity areas from the outbreak zones 
of Anzio and Rome in August and September (Table). Al-
though the highest mobility proximity from Anzio was to 
Rome in August and September, the mobility proximity 
from Rome to Anzio was also found among the top 10 des-
tinations. Overall, Rome had higher connectivity to many 
more areas than Anzio.

Synergistic Effects: Human Mobility and  
Transmission Suitability
We derived risk maps for autochthonous chikungunya 
transmission by combining the vectorial capacity and 
mobility proximity estimates for the Lazio region in Italy 
and Var department in France for August–October 2017 
(Appendix 2 Figure 4). The areas at risk because of the 
outbreak in Var were identified to be located along the 
French and northern Spanish Mediterranean coastlines, 

Mallorca, and Rome in August (Appendix 2 Figure 4); 
the risk regions for the Lazio outbreak in August included 
large parts of Italy as well as areas in France, Spain, and 
Greece (Figure 6). In general, the size of the area at risk 
contracted in September and more so in October because 
of less favorable climate conditions, except in the most 
southern region of Italy (Figure 6), such as the Calabria 
region, where the outbreak also empirically continued 
longer in the fall (Figure 2).

In the Lazio region, an analysis of the combination 
of vectorial capacity (Appendix 2 Figure 5) and mobility 
proximity revealed a higher transmission potential in Au-
gust (Appendix 2 Figure 6), with implications for targeting 
surveillance and outbreak control activities to this region. 
The largest area of risk for spread from Anzio was Rome, 
but the risk for spread from Rome was more widespread 
in the region (Appendix 2 Figures 6, 7). The areas at risk 
for spread in the Lazio region differed during August com-
pared with September and October.
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Figure 3. Incoming passengers from chikungunya active transmission areas and outgoing passengers to other airports in Europe from 
Rome (FCO), Marseille (MRS), and Nice (NCE) airports, August 2017. The stable vector presence area is highlighted in yellow.
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Wikipedia and Google Trend Indicators
For the outbreaks in Italy, several pathogen and vector-
related Wikipedia and Google Trend search pattern 
anomalies are illustrated (Appendix 2 Figure 8). The 
peaks in these abnormalities coincided with the peak of 
the outbreak and therefore are not useful for early detec-
tion and response activities. Detailed information about 
Wikipedia and Google Trend indicators are provided in  

Appendix 3 (https://wwwnc.cdc.gov/EID/article/25/6/18-
0138-App3.pdf).

Big Data and Emerging Infectious Diseases
In light of the arrival and explosive expansion of chi-
kungunya in the Americas in 2013 through Ae. aegypti 
moquitoes (24), big data offer the opportunity to monitor 
the introduction and spread of chikungunya in Europe. An 
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Figure 4. MP estimates from the 
Lazio region, Italy, to areas in 
Europe with stable populations of 
Aedes albopictus mosquitoes, July–
September 2017. Heavy outlines 
indicate the chikungunya outbreak 
areas. MP, mobility proximity.
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outbreak can be divided, broadly speaking, into 2 distinct 
phases. The first phase is importation of the virus via a vi-
remic person into a virus-naive population. For this phase, 
we used big data (volume) to estimate air passenger-jour-
neys from areas with active chikungunya transmission as 
a measure of the force of introduction of the virus into the 
outbreak zones in Europe. To identify areas with onward 
transmission risk, we also considered the volume of air 
passengers leaving these outbreak zones. For the second 
phase, the establishment of autochthonous transmission in 
Europe is a function of virus importation, population den-
sity, vector activity, climate conditions, exposure patterns, 
and several other factors that are more difficult to quantify 
(17). Our study addressed some of these epidemiologic 
challenges by using big data. Rather than a Twitter con-
tent analysis, which has been performed for several out-
breaks (25–28), we used near–real-time geocoded Twitter 
data (velocity) to quantify human mobility patterns and 
disentangled connectivity between populations. Mobility 
estimates also reflect population density and indirectly 
take into account exposure patterns because such popula-
tions on the move are occasionally susceptible to exposure 
and are also a source of exposure. The ecology of the virus 
and the human-vector transmission cycle were captured 
by vectorial capacity (variety), which quantified transmis-
sion risk on the basis of climate conditions. Thus, we were 
able to quantify the trajectory of an arbovirus outbreak by 
dissecting and better understanding its phases.

Our analysis of big data revealed distinct mobility pat-
terns between the outbreak zones in France and Italy, be-
tween Rome and Anzio, and between Rome and most of 
the local outbreak clusters in Italy. However, the potential 
effects of these mobility patterns on local spread need to 
be confirmed epidemiologically by phylogenetic analyses. 
Although the sensitivity of our risk maps based on mobility 
and climate data to identify areas at risk for virus spread 
was good, the specificity needs to be further improved, for 
example, by including local contextual factors such as land 
use and vector activity. Wikipedia page hits and Google 
Trends have been proposed as resources for disease sur-
veillance and outbreak detection. However, our analysis 
demonstrates that these sources seemed to mainly indicate 

public awareness of the chikungunya outbreaks as they 
peaked. For such reasons, they seem to be of little use for 
early response.

The combination of short-distance air passenger-jour-
neys (within Europe, as opposed to overseas) and geocoded 
Twitter data lends itself to cross-validation. We found that 
the 2 approaches consistently identified several cities with 
established vector populations at a heightened risk for vi-
rus importation, reflecting the potential for spread between 
countries and cities in Europe. Some of these regions had 
previously encountered autochthonous transmission (29).

The R0 estimates, which were derived by using epi-
demiologic data, were in accordance with the vectorial 
capacity predictions for the outbreak zones based on local 
climate conditions. Based on the vectorial capacity, R0 can 
be derived by multiplication with the infectious period. For 
chikungunya, an infectious period of 3–7 days was reported 
(30). The vectorial capacity of ≈0.7 would give rise to an 
R0 of ≈2–3. This range is within that which we observed 
in the Rome and Anzio regions in July and August, but 
the vectorial capacity was estimated to be higher (≈0.8) in 
the Calabria region, translating into an R0 of just over 3–4, 
which is in agreement with the epidemiologic analysis of 
the outbreak data (Figure 2).

Although our mobility analysis showed that the local 
mobility from Var was considerable, no autochthonous 
chikungunya cases were reported from other identified 
risk regions along the Mediterranean coast of France and 
in northern Spain. However, the vectorial capacity of Ae. 
albopictus mosquitoes to transmit the virus is lower in Var 
than in Lazio, which may explain this discrepancy. Previ-
ous studies assessing the risk for local outbreaks after out-
breaks outside of Europe found that inbound flight traveler 
frequencies correlated strikingly well with local reports of 
virus importation frequencies into Europe (9). However, 
most of these studies evaluated these risks independently 
and did not attempt to estimate the combined risk for virus 
importation and climate suitability (31,32). Moreover, they 
did not assess local dispersion patterns from airports or out-
break areas. We analyzed big data for long- and short-dis-
tance mobility. A major strength of this big data approach 
is the near real-time availability of mobility patterns based 
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Table. Top 10 areas where mobility proximity to the 2 chikungunya outbreak zones was highest, Europe, August 2017 

Rank 
Southern Europe 

 
Lazio region 

From Var department, France From Lazio region, Italy From Anzio From Rome 
1 Alpes-Maritimes Florence  Roma Vatican 
2 Bouches-du-Rhône Milano  Nettuno Fiumicino 
3 Torino Napoli  Sabaudia Sabaudia 
4 Paris Venezia  Ardea Civitavecchia 
5 Alpes-de-Haute-Provence Paris  Civitavecchia Santa Marinella 
6 Rhone Barcelona  Pomezia Tivoli 
7 Hérault Perugia  Aprilia Anzio 
8 Vaucluse Latina  Cisterna Di Latina Ladispoli 
9 Barcelona Siena  Fondi Pomezia 
10 Baeleares Salerno  Amatrice Valmontone 
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on social media, which are timelier and more accessible 
and less costly than air passenger data available from com-
mercial providers, such as the IATA. This approach can 
identify areas of heightened mobility that are potentially 
at risk for onward transmission, as we have shown in this 
analysis. Geocoded Twitter data can be a good proxy for 
human mobility (15), but prior research did not explore 
how such data can be a timely resource for preparedness 
and response to infectious disease outbreaks.

Similar to others who have used IATA and Twitter 
data in their studies, we found these novel data sources to 
be reliable and useful. However, we note that Twitter data 
can potentially be biased because Twitter users may repre-
sent a select population whose mobility patterns differ from 
those of the general population; more specifically, they 
represent a population of Twitter users who have allowed 
Twitter to follow their geolocations. Future studies need to 
validate the use of social media data in such applications. 
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Figure 5. Estimated areas of 
risk for chikungunya spread from 
the outbreak areas of Anzio and 
Rome in the Lazio region, Italy, 
based on combined VC and 
MP estimates, August–October 
2017. Heavy outlines indicate 
the outbreak areas. MP, mobility 
proximity; VC, vectorial capacity.



PERSPECTIVE

These methods are an improvement over mobile telephone 
tracking data because they do not rely on a single provider 
network and are a less costly data source to acquire.

Seasonal weather forecasts may have provided better 
input into the assessment of vectorial capacity, specifically 
for the fall of 2017. Moreover, autochthonous transmission 
risk may also be related to local proliferation of vectors and 
local environmental, social, and behavioral characteristics, 
such as awareness about the symptoms of chikungunya 
(Appendix 3). Such factors have been found to be associ-
ated with the local transmission risk for dengue (33). Last, 
because of the paucity and underreporting of chikungunya 
cases, we may have potentially underestimated the passen-
ger volume from active transmission areas in Africa.

This study illustrates the potential value of using big 
data (18–20) to pinpoint areas at risk for the introduction 
and dispersion of emerging infectious diseases. The analy-
sis identified that the areas at greatest risk were those in 
close proximity to the original outbreaks and several larger 
metropolitan areas. The trajectory and sustained spread of 
emerging infectious diseases can be anticipated with pre-
dictive modeling in real time. This study suggests that big 
data can be an indispensable tool for the prevention and 
control of emerging infectious diseases.

J.R. received partial funding from the Swedish Research Council 
for Sustainable Development (FORMAS) (no. 2017-01300). The 
funder had no influence on the research conducted.
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