Emergent Invasive Group A Streptococcus dysgalactiae subsp. equisimilis, United States, 2015–2018

Appendix

Construction of Maximum-Likelihood Trees

We constructed maximum-likelihood trees (Figure 1, https://wwwnc.cdc.gov/EID/article/25/8/18-1758-F1.htm) by using kSNP3.0 (1) with a kmer size of 19 and used MEGA 7 for evolutionary analysis (2). We inferred the evolutionary history by using the maximum-likelihood method on the basis of the general time reversible model (3). The trees with the highest log likelihood (-124033.37 for left tree and -13853.47 for right tree) are shown. We obtained initial trees for the heuristic search automatically by applying neighbor-join and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood approach and then selecting the topology with superior log likelihood value (2). Multilocus sequence type, emm type determination, and grouping traits were determined as described previously (4–6). By using the CDC S. pyogenes whole-genome sequencing bioinformatics pipeline (4), we found that all but 7 of the strains shown were positive for the sfb1fibronectin binding protein gene (data not shown). Three of the 7 sfb1-negative strains included AC2713 and the 2 identical EB1–5 isolates. All strains except for the 2 group L strains (left tree) were positive for the query for the S. pyogenes nga determinant encoding the extracellular NAD+ glycohydrolase virulence factor (data not shown). As shown, 13 strains were positive for erm- or mef- encoded macrolide-resistance determinants, including a cluster of 8 GAS/ST128 isolates of *emm* subtype *stG245.0*. A single group *ermT*-positive group L strain had the ParC S79Y substitution associated with fluoroquinolone-resistance. In addition, a single group G/ST277 strain was positive for the pilus determinant T58. Single isolates were positive for the CDC pipeline queries for exotoxin genes *smeZ* (group L in left tree) and *speC* (GAS/ST128/stG652.0). All strains were β -hemolytic because of expression of the previously

characterized homologue of the *S. pyogenes* streptolysin S determinant (data not shown) (7). A total of 19,701 positions (for 49 isolates of left tree) and 2,108 (36 isolates of right tree) are included in the final datasets. The distance reference is indicative of 394 single nucleotide polymorphisms based on 19,701 positions within the 48 genomes (left tree) or 42 positions based upon 2,108 positions within 36 genomes (right tree). Genome fastQ accession numbers are provided for the 48 isolates (Appendix Table) and are associated with laboratory identifiers as well as the information provided from CDC *S. pyogenes* bioinformatics pipeline as described in Chochua et al. (*4*) and Appendix (Construction of Maximum-Likelihood Trees).

Appendix Table	e. SRA accession numbers,	laboratory identifiers	, and other features of	Streptococcus	dysgalactiae subsp.
equisimilis study	/ isolates	-			

						Features detected from S.
					emm	pyogenes WGS bioinformatics
Biosample accession no.	LABID*	Group†	MLST	County, year‡	subtype§	pipeline¶
SAMN09848964	20173110	A	128	NM2, 2016	stG652.0	sfb1, nga
SAMN09848983	20173524	А	128	NM2, 2017	stG652.0	sfb1, nga
SAMN07153383	20154682	А	128	NM2, 2015	stG652.0	sfb1, nga
SAMN08690859	20164183	А	128	NM1, 2016	stG652.0	sfb1, nga
SAMN08691925	20171692	А	128	NM3, 2016	stG652.0	sfb1, nga
SAMN09849571	20182387	А	128	NM3, 2017	stG652.0	sfb1, nga
SAMN09849325	20181492	А	128	NM4, 2017	stG652.0	sfb1. nga
SAMN07153783	20156439	А	128	EB1, 2015	stG652.0	sfb1, nga
SAMN07154238	20162102	А	128	EB2, 2015	stG652.0	sfb1. nga
SAMN08691109	20165290	А	128	EB1, 2016	stG652.0	sfb1, nga
SAMN08691691	20170764	A	128	NM3, 2016	stG652.0	sfb1, nga
SAMN08691143	20165326	A	128	CA1 2016	stG652.0	sfb1 nga
SAMN08692346	20173686	A	128	EB2 2016	stG652.0	sfb1 nga
SAMN08691545	20170128	A	128	CO1 2016	stG652.0	sfb1 nga
SAMN07154260	20162127	Δ	128	CA1 2015	stG652.0	sfb1 nga
SAMN08691583	20170168	A	128	CO2 2016	stG652.0	sfb1 nga
SAMN08691937	20170100	Δ	120	OR2 2016	stG652.0	sfb1 nga
SAMN09849664	20171717	Δ	120	OR1 2017	stG652.0	sfb1 nga
SAMN07153796	20102077	Δ	120	EB1 2015	stG652.0	sfb1 nga
SAMN07154052	20150452	A A	120	NV2 2015	stG185.0	sfb1 nga
SAMN08600502	20100370	~	120	GA5 2016	stC245.0	sibi, nga
SAMN08601606	20102322	~	120	TN1 2016	SIG245.0	sibi, riga
SAMN03154290	20170030	~	120	CT2 2015	31G240.0	sibi, riga
SAMN08601781	20103009	A	120	GA2 2015	SIG052.0	sibi, riga
SAMN00940027	20171173	A	120	GAZ, 2010	SIG052.0	sibi, riga, spec
SAMN09649027	20176966	A	120	CO3, 2017	SIG405.0	SIDT, TIga
SAMN08691278	20165952	A	128	1 NZ, 2016	SIG245.0	sib1, nga, ermB
SAIVINU/ 1530/0	20150157	A	120	NY1, 2015	SIG245.0	SID I, IIga, IIlei
SAIVINU7 153302	20154376	A	120	NY3, 2015	SIG245.0	SIDT, riga, mei
SAMN00040040	20155412	A	128	NY1, 2015	SIG245.0	sib1, nga, mer
SAMN09646910	20103223	A	120	NY1,2010	SIG245.0	SIDT, riga, mei
SAMN08691739	20170914	A	128	NY1, 2016	SIG245.0	sib1, nga, mer
SAMN08691478	20166757	A	128	NY2, 2016	StG245.0	stb1, nga, met
SAMN10342858	20185475	A	128	NY2, 2018	StG245.0	sto1, nga, met
SAMN0/154253	20162120	A	128	EB1, 2015	stG485.0	nga
SAMN0/1542/3	20162140	A	128	EB1, 2015	stG485.0	nga
SAMN09848906	20161329	G	48	NM3, 2015	stG643.0	nga, met
SAMN09849191	20180052	G	127	MD2, 2017	stG245.0	nga, tetM
SAMN10342859	20162531	G	35	GA5, 2016	emm23.4	sfb1, nga, mef, tetM, cat
SAMN10342860	20170556	G	277	OR2, 2016	stG6.0	nga, tee58
SAMN08692801	20175240	С	20	NM3, 2017	stG62647.0	nga
SAMN08691915	20171682	С	17	NM1, 2016	stC74A.0	sfb1, nga, ermTR
SAMN09848934	20170560	G	17	OR3, 2016	stG485.0	sfb1, nga
SAMN08691738	20170893	G	206	CT1, 2016	stG245.0	sfb1, nga
SAMN08690595	20162524	G	17	GA1, 2016	stG245.1	sfb1, nga
SAMN09849033	20177043	G	17	GA3, 2017	stG6792.0	sfb1, nga
SAMN10342861	20185314	G	470	OR2, 2018	stG840.0	sfb1, nga
SAMN10342862	20161734	L	1	MD1, 2016	stL1921.0	sfb1, smeZ
SAMN10342863	20163969	L	467	MN1, 2016	stL1929.1	sfb1, ermT, ParC-S79Y

 SAIVIN 10342803
 20163969
 L
 467
 MN1, 2016
 stL 1929.1
 sfb1, ermT, ParC-S79Y

 *These isolates are listed in same order (top to bottom) as in Figure 1, panel A (https://wwwnc.cdc.gov/EID/article/25/8/18-1758-F1.htm).
 fThe group A strains were positive for the group A carbohydrate cluster gene I (gac/). The group carbohydrate for these and the strains of groups C, G, and L were also determined serologically.
 Fourther and year of isolation. For example, NM2, 2016 refers to New Mexico county 2 and isolation during 2016.
 semm subtypes provided from CDC M protein gene database at ftp://ftp.cdc.gov/pub/infectious_diseases/biotech/tsemm.
 4dditional features obtained from CDC whole genome sequencing bioinformatics pipeline as described in Chochua et al. (4) and this Appendix (Construction of Maximum-Likelihood Trees).

References

- Gardner SN, Slezak T, Hall BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:2877–8. <u>PubMed</u> <u>http://dx.doi.org/10.1093/bioinformatics/btv271</u>
- 2. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. <u>PubMed</u> <u>http://dx.doi.org/10.1093/molbev/msw054</u>
- 3. Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000. p. 150–75.
- Chochua S, Metcalf BJ, Li Z, Rivers J, Mathis S, Jackson D, et al. Population and whole genome sequence based characterization of invasive group A streptococci recovered in the United States during 2015. MBio. 2017;8:e01422–17. <u>PubMed http://dx.doi.org/10.1128/mBio.01422-17</u>
- Lancefield RC. The antigenic complex of *Streptococcus haemolyticus*: I. Demonstration of a typespecific substance in extracts of *Streptococcus haemolyticus*. J Exp Med. 1928;47:91–103.
 <u>PubMed http://dx.doi.org/10.1084/jem.47.1.91</u>
- 6. Broyles LN, Van Beneden C, Beall B, Facklam R, Shewmaker PL, Malpiedi P, et al. Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. Clin Infect Dis. 2009;48:706–12. <u>PubMed http://dx.doi.org/10.1086/597035</u>
- 7. Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V. Streptolysin S and necrotising infections produced by group G streptococcus. Lancet. 2002;359:124–9. <u>PubMed</u> <u>http://dx.doi.org/10.1016/S0140-6736(02)07371-3</u>