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Since the introduction of the diphtheria toxoid 
vaccine, cases of diphtheria caused by toxigenic 

strains of Corynebacterium diphtheriae have decreased 
(1). More recently, however, C. diphtheriae appears 
to have reemerged, with outbreaks of diphtheria 

occurring globally and with increasing frequency. 
In the 1990s, states in the former Soviet Union ex-
perienced several epidemics (2). Since 2010, out-
breaks have been described almost yearly and span 
the globe, including South America (3,4), Southeast 
Asia (5), South Africa (6,7), and Europe (8,9). Data 
from national surveillance programs, such as one in 
Latvia, have shown that diphtheria incidence can in-
crease despite adequate vaccination programs (10). 
Furthermore, serologic studies performed in Europe 
show that waning or inadequate immunity to diph-
theria is becoming more common, indicating popu-
lations increasingly are susceptible to diphtheria re-
emergence (11,12). 

Those living in impoverished, urban settings, 
even in developed countries, appear to be especial-
ly susceptible to C. diphtheriae infection. Nontoxi-
genic strains have been shown to have epidemic 
potential, causing infections in persons afflicted 
by homelessness, alcohol abuse, and injection drug 
use (9,13–15). Nontoxigenic strains of C. diphtheriae, 
against which the toxoid vaccine does not provide 
immunity, are being reported with greater fre-
quency as a source of severe disease, both in the 
form of cutaneous diphtheria and more invasive 
infections, such as bacteremia and endocarditis 
(14–21). In addition, nontoxigenic strains have the 
potential to become toxigenic through exposure to  
corynebacteriophages carrying the toxin gene, par-
ticularly through contact with toxin-producing 
strains carried by travelers returning from diph-
theria-endemic countries (22). Use of available, 
effective, and well-tolerated antimicrobial drugs 
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targeted to C. diphtheriae infection can counter the 
growing threat. 

Currently, penicillin and erythromycin are con-
sidered first-line antimicrobial drugs for diphtheria 
treatment (23). Since 2010, a limited number of case 
reports from Canada, the United States, and the 
United Kingdom have described C. diphtheriae iso-
lates resistant to penicillin and other conventional 
antimicrobial drugs (24–26). In 2015, the Clinical 
and Laboratory Standards Institute (CLSI) lowered 
the penicillin-susceptible breakpoint for C. diphthe-
riae from a MIC of <1 mg/L to <0.12 mg/L, citing 
expert opinions and discordance with breakpoints 
determined by the European Committee on Anti-
microbial Susceptibility Testing as reasons for the 
change (27,28). With the change, many C. diphthe-
riae isolates previously considered penicillin-sus-
ceptible are now classified as penicillin-intermedi-
ate (i.e., intermediately susceptible to penicillin). 
Consequently, clinicians might opt for alternative 
antimicrobial drug regimens, such as clindamy-
cin, vancomycin, or erythromycin, the alternative 
first-line agent. However, these drugs are limited 
by gastrointestinal side effects, increased risk for C. 
difficile infection, and unnecessary broad-spectrum 
antimicrobial exposure. 

No published reports have demonstrated 
whether the reclassification of some C. diphtheriae 
isolates to penicillin-intermediate truly reflects an 
increasing prevalence of penicillin resistance at the 
phenotypic and genotypic levels. Limited evidence 
of penicillin-resistant C. diphtheriae infections have 
been reported in cases in which failure of initial 
penicillin therapy necessitated a change to broad-
spectrum antimicrobial drugs before the patients’ 
clinical signs and symptoms improved (24,26).  
The absence of large-scale susceptibility testing 
leaves a scarcity of data. One available study re-
viewed susceptibility testing performed on ≈200 C. 
diphtheriae isolates collected from various provin-
cial reference laboratories across Canada during 
2006–2015 and found 100% of isolates tested were 
susceptible to penicillin, as defined by a MIC of  
<1 mg/L (29).

C. diphtheriae is a reemerging pathogen of pub-
lic health concern and penicillin breakpoint changes 
could have implications for clinical treatment. We 
assessed the evolving trends in C. diphtheriae anti-
microbial nonsusceptibility at the phenotypic and 
genotypic levels by performing susceptibility test-
ing and whole-genome sequencing (WGS) analysis 
on isolates collected in Vancouver, British Columbia, 
Canada, during 2015–2018.

Materials and Methods

Collection of C. diphtheriae isolates
We isolated C. diphtheriae from blood, throat, and 
wound cultures collected from inpatients and out-
patients at St. Paul’s Hospital, an inner city, tertiary 
care center in Vancouver, during March 2015–Sep-
tember 2018. We included all unique C. diphtheriae 
isolates. For patients with multiple C. diphtheriae iso-
lates during the study period, we only included the 
first isolate. One patient in the study had 2 isolates 
recovered the same day from blood and wound cul-
tures; we only obtained MICs from the blood iso-
late, but we performed WGS on the wound isolate, 
assuming the 2 isolates would represent the same 
strain. We confirmed C. diphtheriae isolates by using 
methods described previously (14). The National Mi-
crobiology Laboratory of the Public Health Agency 
of Canada confirmed all isolates were nontoxigenic 
by using a modified Elek test and PCR. We obtained 
ethics approval for this study from the University of 
British Columbia–Providence Health Care Research  
Ethics Board.

Antimicrobial Susceptibility Testing and Interpretation
We performed antimicrobial susceptibility testing 
for penicillin, erythromycin, clindamycin, and van-
comycin by using Etest (bioMérieux, https://www.
biomerieux.com). We interpreted results by using 
breakpoints from the second edition of the CLSI M45 
guidelines (30) published in 2010 and from the third 
edition (27) published in 2015.

WGS, Multilocus Sequence Type, and  
Antimicrobial Resistance Marker Analysis
We stored C. diphtheriae isolates in trypticase soy broth 
with 13.8% glycerol at –70°C. For WGS, we thawed 
and subcultured the isolates onto 5% sheep blood 
agar plates. We incubated single isolates in Mueller-
Hinton broth at 37°C for 48 h. After incubation, we 
resuspended the cultures in phosphate buffered sa-
line with 1% sodium dodecyl sulfate and 0.25 mg/mL 
proteinase K and incubated them overnight at 55°C 
before heating to 95°C for 15 min and bead lysing on 
the TissueLyser LT (QIAGEN, https://www.qiagen.
com) at a setting of 50 for 2 min. We performed DNA 
extraction on the MagNA Pure Compact (Roche Di-
agnostics, https://www.roche.com) and eluted in 50 
µL elution buffer.

We used the KAPA HyperPlus Kit with KAPA 
dual-indexed adapters (Roche Sequencing, https://
sequencing.roche.com) for WGS. We assessed DNA 
library quality by using Agilent High Sensitivity DNA 
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Chips on the Bioanalyzer 2000 (Agilent Technologies, 
https://www.agilent.com). After normalization of 
the samples, we sequenced DNA on the MiSeq (Il-
lumina, https://www.illumina.com) platform using 
MiSeq Reagent 2×300 V3 Kit (Illumina). We submit-
ted processing codes to GitHub (https://github.com/
schorlton/cdip_sequencing). We preprocessed reads 
to remove low-quality and contaminated sequences, 
and then performed de novo assembly. We identified 
multilocus sequence types (STs) through analysis of 
assembled scaffolds by using the Center for Genomic 
Epidemiology database version 2.0.0 and multilo-
cus sequence type (MLST) tool 2.0.1 (https://www. 
genomicepidemiology.org). We identified antimicro-
bial nonsusceptibility by using the Resistance Gene 
Identifier in the CARD database version 3.0.2 (31,32; 
http://card.mcmaster.ca) to locate individual mark-
ers of nonsusceptibility.

Results

Isolate Characteristics
We identified 60 nontoxigenic C. diphtheriae isolates 
during the study period, 1 from a blood culture, 1 
from a throat culture, and 58 from wound cultures. 
We identified 4 isolates in 2015, 12 in 2016, 26 in 2017, 
and 18 in 2018. We conducted WGS on 56/60 (93.3%) 
isolates and obtained MICs from susceptibility testing 
for 45/60 (75%) isolates. 

Antimicrobial Susceptibility Testing
We obtained MICs by susceptibility testing for peni-
cillin, erythromycin, clindamycin, and vancomycin 
(Figure). The MIC required for 50% growth inhibi-
tion for penicillin was 0.25 mg/L and for 90% growth 
inhibition was 0.38 mg/L. Using the 2010 edition of 
the CLSI breakpoints, all isolates were penicillin-sus-
ceptible. Using the 2015 edition of CLSI breakpoints, 
all isolates, except 1 with a MIC of 0.125 mg/L, were 
nonsusceptible (Figure, panel A). The distribution of 
MICs for penicillin did not change greatly over the 
study period. One isolate was resistant to erythromy-
cin and clindamycin with a MIC of >256 mg/L for 
both agents (Figure, panel B). All isolates tested were 
susceptible to vancomycin (Figure, panel B). Interpre-
tations for erythromycin, clindamycin, and vanco-
mycin testing were unchanged between the 2010 and 
2015 CLSI M45 breakpoints.

WGS Analysis, MLST, and Genotypic Correlates  
of Resistance
MLST typing revealed ST76 was the predominant 
strain in our study, in 52/56 isolates. We also noted 1 

each of ST5, ST32, ST319, and 1 novel ST most similar 
to ST441/442/444.

We sequenced 56 isolates to investigate resistance 
markers, yielding a median of 0.4 million (interquar-
tile range [IQR] 0.3–1.05 million) paired-end reads 
per sample and an estimated median coverage of 

Figure. Distribution of MICs from antimicrobial susceptibility 
testing on Corynebacterium diphtheriae isolates collected 
at St. Paul’s Hospital, Vancouver, British Columbia, Canada 
during March 2015–September 2018. A) MICs from penicillin 
susceptibility testing. Green box indicates penicillin-susceptible 
breakpoints from the 2010 Clinical Laboratory Standards 
Institute (CLSI) M45 guidelines (30); red box indicates penicillin-
susceptible breakpoints from the 2015 CLSI M45 guidelines 
(27). B) MICs for erythromycin, clindamycin, and vancomycin 
susceptibility testing.
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100´ (IQR 75–263´) per isolate. Of the 56 samples se-
quenced, 27 had a mean read quality >30 before trim-
ming; all samples had a mean read quality >24. We 
successfully assembled genomes for 45 study isolates, 
recovering a median of 59 contigs (IQR 55–62 contigs) 
and 2.388 Mbp (IQR 2.387–2.389 Mbp). We recovered 
50% of each assembly length with contigs of 158.8 kbp 
(IQR 158.8–180.3 kbp) or longer. An additional 11 iso-
lates had incomplete or fragmented assemblies, a me-
dian of 530 contigs (IQR 190–1,302 contigs), a length 
of 2.38 Mbp (IQR 2.086–2.398 Mbp), and an N50 (the 
length of the smallest contig among the set of the larg-
est contigs that together cover >50% of the assembly) 
of 7.1 kbp (IQR 1.8–27.7 kbp). 

In the fully assembled genomes, 39/45 isolates 
had the sul1 gene, conferring sulfonamide resistance, 
1 isolate had tetO, conferring tetracycline resistance, 
and 1 isolate had a plasmid harboring ermX, confer-
ring macrolide and lincosamide resistance. The iso-
late carrying ermX exhibited phenotypic resistance to 
erythromycin and clindamycin during susceptibility 
testing with MIC of >256 mg/L (Figure, panel B). We 
detected sul1 in 7/11 incomplete assemblies. None 
of the isolates we tested contained single-nucleotide 
variants in the CARD database, nor any markers of 
β-lactam resistance.

Discussion
Reports of C. diphtheriae outbreaks are becoming 
increasingly common. In particular, nontoxigenic 
strains pose a major threat to public health because 
they are not targeted by the current diphtheria tox-
oid vaccine and can cause invasive infections. Most 
(44/45) C. diphtheriae isolates collected at our institu-
tion during 2015–2018 were reported as penicillin-
intermediate in accordance with the updated 2015 
CLSI M45 breakpoints. However, this reclassification 
of susceptibility does not appear to be supported by 
evidence of resistance to penicillin at the phenotypic 
or genotypic level, at least within isolates identified 
from our institution’s inner-city catchment area. In 
addition, the distribution of MICs for penicillin does 
not appear to have changed substantially over the 
4-year study period. 

Antimicrobial susceptibility testing revealed 2.2% 
of isolates in our study were erythromycin-resistant, 
but none were penicillin-resistant. These results are 
similar to those from a 2015 study in Canada by Ber-
nard et al. (29) in which 32/195 (16.4%) isolates were 
erythromycin-resistant (MIC of >2 mg/L) by broth 
microdilution susceptibility testing, but none were 
penicillin-intermediate or penicillin-resistant (MIC of 
>1 mg/L). 

Misclassification of penicillin susceptibility could 
have clinical implications. A preference for erythro-
mycin over penicillin as a first-line therapy for C. diph-
theriae infection could increase rates of inappropriate 
treatment because of greater rates of erythromycin 
resistance observed to date. Another disadvantage of 
using erythromycin for treating patients with cutane-
ous diphtheria is that wound cultures positive for C. 
diphtheriae often are concurrently positive for group A 
Streptococcus, for which penicillin is the optimal anti-
microbial agent (13).

Maintaining effective antimicrobial options is es-
sential to curtailing future outbreaks. The change in 
the breakpoint for penicillin susceptibility published 
in the CLSI M45 third edition in 2015 (27) could affect 
treatment decisions by clinicians. Clinical outcomes 
are unclear for patients with C. diphtheriae infection 
with MICs in the 0.12–1 mg/L range. A 2011 case 
report in Canada described a multidrug resistant C. 
diphtheriae isolate harboring the ermX gene and ex-
hibiting resistance to erythromycin, clindamycin, and 
sulfonamide (25). The isolate had an MIC of penicillin 
of 0.25 mg/L and the patient ultimately was treated 
successfully with cephalexin (25). 

Cases of penicillin treatment failure have been 
described in other reports. A case of C. diphtheriae en-
docarditis (MIC of >16 mg/L) was reported in a child 
who was refractory to initial therapy with penicillin 
G and whose condition did not improve until anti-
microbial treatment was changed to meropenem and 
vancomycin (24). FitzGerald et al. (26) reported an-
other case of penicillin G treatment failure in a child 
in the United Kingdom with cutaneous diphtheria. 
The patient’s isolate was later found to be nonsus-
ceptible to penicillin, but the MIC was not reported. 
The patient recovered shortly after a macrolide was 
administered, but the treatment caused intense gas-
trointestinal side effects (26). 

Overall, our study and other reviews of C. diph-
theriae susceptibility performed in Canada and glob-
ally suggest that elevated MICs of penicillin are rare 
(29,33). Despite clinical observation of isolated cases 
of penicillin resistance, one could argue that prema-
turely opting for erythromycin as first-line therapy 
for C. diphtheriae infection poses a greater risk than 
penicillin, given the aforementioned concerns of 
erythromycin resistance and potential for increased 
adverse effects.

Of note, WGS did not identify genetic markers of 
β-lactam resistance in the study isolates. However, 
WGS did detect ermX in the isolate phenotypically 
resistant to erythromycin; ermX is a gene encoding a 
23S rRNA adenine N-6-methyltransferase known to 
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confer resistance to erythromycin and clindamycin in 
C. diphtheriae (25,34,35). Although the specific goal of 
sequencing was to detect β-lactam resistance mecha-
nisms, WGS afforded the ability to identify other po-
tential markers of antimicrobial resistance, namely 
sul1 and tet. The sul1 gene is known to encode dihy-
dropteroate synthase, which can confer resistance to 
sulfonamides and the tet gene encodes a ribosomal 
protection protein that can mediate tetracycline resis-
tance (36). A case of both sul1 and tet genes in a non-
diphtheria corynebacterial infection with correspond-
ing elevated MICs of 32 mg/L was reported but has 
yet to be associated with C. diphtheriae (37). 

Our laboratory does not routinely perform an-
timicrobial susceptibility testing for sulfonamides 
and tetracyclines because neither is recommended 
routinely for C. diphtheriae infections. The clinical rel-
evance of detecting sul1 and tet genes is unclear and 
requires further study. Additional susceptibility test-
ing is needed to establish whether the study isolates 
carrying sul1 and tetO exhibited corresponding phe-
notypic resistance to sulfonamides and tetracyclines.

ST76 was predominant in our study, exhibited in 
93% of isolates. Further analysis confirmed that these 
isolates represented a single clonal strain (38), rep-
resenting further clonal expansion compared with a 
previous study of C. diphtheriae isolates identified in 
Vancouver during 1998–2007. ST76 also was the dom-
inant sequence type in that review but encompassed 
only 69% of isolates (13). ST76 has been reported 
elsewhere. An instance in an online MLST database, 
PubMLST.org (https://pubmlst.org/cdiphtheriae), 
lists 9 ST76 isolates submitted from St. Petersburg, 
Russia, during 2005–2010. All were nontoxigenic by 
Elek test. In another report, 5 isolates from Belarus 
collected during 2004–2014 also were typed as ST76 
and found to be nontoxigenic (39). No epidemiologic 
links are apparent between our isolates and those de-
scribed from Russia or Belarus. 

We also noted ST5 and ST32 in our review from 
downtown Vancouver during 1998–2007 (13), al-
though less frequently observed in our study. ST5 
previously was recovered in Russia, the United States, 
and France, and ST32 is known to circulate in Europe 
and Australia (13,33,40,41). The novel sequence type 
related to ST441/442/444 identified in this study has 
not been described in other studies to date. 

Among ST76 isolates, we noted heterogeneity 
in antimicrobial resistance marker carriage, specifi-
cally sul1 and ermX, and 5/52 (9.6%) ST76 isolates 
had no identifiable markers. Patterns of resistance 
marker carriage also differed between isolates of 
other MLSTs, with no markers found in ST5 or ST32 

isolates, sul1 in the ST319 isolate, and tetO in the 
ST441/442/444 isolate. In addition to the 7 target re-
gions used for routine MLST in our study, further as-
sessment of intrastrain variability and the extent of 
clonality is warranted through analysis of additional 
genomic loci such as those performed in other studies 
of C. diphtheriae epidemiology (9).

Our study has some limitations. Our catchment 
area was small and limited to the persons from down-
town Vancouver treated at St. Paul’s Hospital, and 
MLST indicated highly clonal C. diphtheriae isolates. 
The generalizability of our results is limited and fur-
ther study is needed to understand how our findings 
apply to other patient populations with different C. 
diphtheriae epidemiology (13). Nonetheless, several re-
cent studies in multiple regions appear to support the 
notion that penicillin resistance remains scarce in cir-
culating strains of C. diphtheriae. Other reviews of peni-
cillin susceptibility in C. diphtheriae, 1 in Canada on 195 
isolates and 1 in Algeria on 157 isolates, reported none 
that would be considered penicillin nonsusceptible by 
the 2010 CLSI breakpoints of MIC >1 mg/L (29,33). 

Another limitation of our study is the lack of clin-
ical outcomes to supplement our phenotypic and ge-
notypic susceptibility data, precluding assessment of 
treatment success and failure rates on the basis of mo-
lecular and phenotypic characterization of isolates. 
Examination of clinical outcomes for patients treated 
for penicillin-intermediate diphtheria with MICs of 
0.12–1 mg/L would be useful, as would an assess-
ment of changes in prescribing practices for antimi-
crobial drugs related to increasing rates of isolates 
classified as penicillin-intermediate. Future studies 
are needed to explore clinical impacts of reclassifica-
tion of isolates as penicillin-intermediate. 

Last, any study using next-generation sequenc-
ing techniques to identify known resistance markers 
from databases, such as our study, has certain biases 
and limitations inherent to the sequencing and marker 
identification process. Current sequencing studies can-
not account for markers not yet identified in databas-
es, nor can such studies identify mixed or unspecified 
genetic effects. In addition, regions with poor assem-
bly quality or with sequence or GC-content-dependent 
assembly gaps can preclude database matching.

In conclusion, we report the absence of penicil-
lin nonsusceptibility in C. diphtheriae isolates collected 
during 2015–2018 and assessed phenotypically by sus-
ceptibility testing and genotypically by WGS. These 
results indicate that the 2015 CLSI M45 guidelines 
lowering the penicillin-susceptible breakpoint from 
an MIC of <1 mg/L to an MIC of <0.12 mg/L for C. 
diphtheriae might misclassify penicillin susceptibility 
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in isolates. Such misclassification could lead to shifts 
in prescribing practices toward less effective, less well-
tolerated, and broader-spectrum antimicrobial drugs 
than penicillin. Further study is warranted to assess 
penicillin susceptibility in other contexts in which lo-
cal strains and resistance patterns differ.
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