Macrolide-Resistant *Bordetella pertussis* in Vietnam, 2016–2017

Appendix

Cycleave Real-Time PCR Assay for Detection of the A2047G Mutation

A cycling probe technology assay was used (*1*,2). To discriminate between the mutant allele A2047G and wild-type allele (non-A2047G) of 23S rRNA in *B. pertussis*, two cycling probes were designed: 5'-Eclipse-GACGGgAAG-HEX-3' for A2047G and 5'-Eclipse-AGACGGaAAG-FAM-3' for non-A2047G. The upper- and lowercase letters in the sequences indicate DNA and RNA, respectively. The duplex Cycleave real-time PCR was performed using an ABI 7500 Fast Real-Time PCR System (Applied Biosystems). PCR amplification was carried out in 20 μ L reactions containing 10 μ L of 2× CycleavePCR Reaction Mix (Takara Bio Inc, Japan), 0.4 μ L of 50× ROX reference dye II (Takara Bio), 2 μ L of DNA sample, 0.2 μ M of each primer (Primer-F: 5'-GAATGGCGTAACGATG-3' and Primer-R: 5'-TGCAAAGCTACAGTAAAGG-3'). The PCR conditions were the following: 20 s at 95°C, followed by 40 cycles of 95°C for 3 s, 60°C for 10 s, and 72°C for 25 s. The fluorescence signal of HEX was monitored on the VIC channel of the PCR system. In each assay, two PCR fragments (A2047- and A2047G-DNA fragments, 5× 10³ DNA copies/ μ L each) were used as positive controls; sterile distilled water was used as a negative control. The detection limits of the PCR assay were »20 DNA copies/tube for both positive controls.

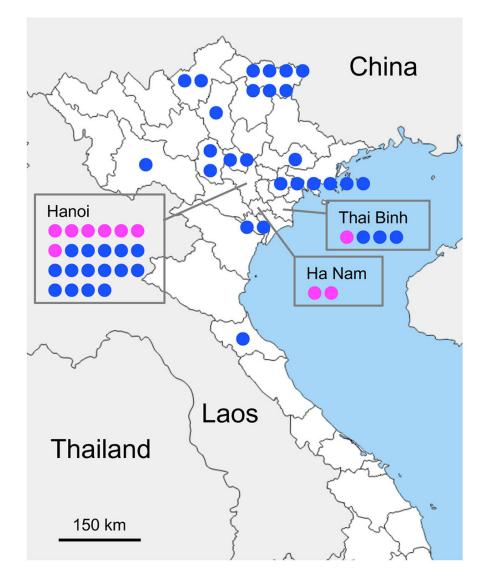
Construction of A2047- and A2047G-DNA Fragments

The positive controls (796 bp each) were constructed by PCR using *B. pertussis* Tohama DNA as a template (non-A2047G strain). The A2047-DNA fragment (wild-type allele) was amplified using the primers 23S rDNA-F (5'-GGTATACCCTGGTAGTGTGAAG-3') and 23S rDNA-R (5'-CGACATCGAGGTGCCAAA-3'), and purified with the MinElute PCR Purification Kit (Qiagen). The A2047G-DNA fragment (mutant allele) was constructed by

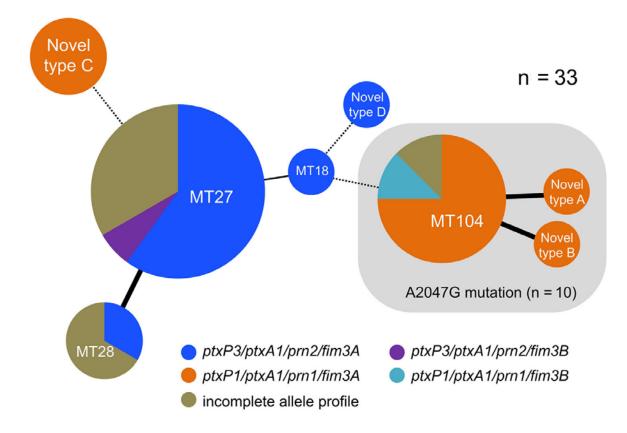
overlap extension PCR method (3). Briefly, two DNA fragments were amplified by PCR using the primer sets, 23S rDNA-F and 23S A2047G-R (5'-

AAGGTTCATGGGGTCTTCCCGTCTAGCCGCGGGTA-3'), and 23S A2047G-F (5'-

TACCCGCGGCTAGACGG<u>G</u>AAGACCCCATGAACCTT-3') and 23S rDNA-R, respectively. The DNA fragments were joined by overlap extension PCR using the primers 23S rDNA-F and 23S rDNA-R and purified with MinElute PCR Purification Kit. The substitution of A with G (at position 2047) in the primer sequences has been underlined.


References

- 1. Duck P, Alvarado-Urbina G, Burdick B, Collier B. Probe amplifier system based on chimeric cycling oligonucleotides. Biotechniques. 1990;9:142–8. PubMed
- Bekkaoui F, Poisson I, Crosby W, Cloney L, Duck P. Cycling probe technology with RNase H attached to an oligonucleotide. Biotechniques. 1996;20:240–8. PubMed https://doi.org/10.2144/96202rr01
- 3. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–9. PubMed <u>https://doi.org/10.1016/0378-1119(89)90358-2</u>


Year of	,,					53 pertussis patients, Vietnam, 20 Allele type of virulence-				2010
specimen			Vaccine	A2047G in		associated genes†			C5330 in	
collection	Province	Age/sex	status	23S rRNA	MLVA type	ptxP	ptxA	prn	fim3	fhaB‡
2016	Hanoi	32 y/F	3 doses	Negative	MT18	3	1	2	A	C
2016	Hanoi	5 m/F	2 doses	Negative	MT27	3	1	2	А	C
2016	Hanoi	28 y/F	3 doses	Negative	MT27	3	1	NA	В	NA
2016	Cao Bang	26 y/F	Unknown	Negative	MT27	3	1	2	А	С
2016	Phu Tho	4 m/F	1 dose	Negative	NA	ND	ND	ND	ND	ND
2016	Phu Tho	3 m/F	1 dose	Negative	MT27	3	1	2	А	NA
2016	Hanoi	2.5 m/M	Unknown	Positive	MT104	1	1	1	А	NA
2016	Bac Giang	2 m/M	0	Negative	MT27	3	1	2	В	NA
2016	Ha Nam	2 m/F	0	Positive	Novel type A	1	1	1	А	C>T
2016	Hanoi	32 d/F	0	Positive	Novel type B	1	1	1	Α	C>T
2016	Hanoi	3 m/F	1 dose	Positive	MT104	1	1	1	Α	C>T
2016	Hanoi	2 m/F	0	Negative	NA	ND	ND	ND	ND	ND
2016	Hanoi	2 m/M	0	Positive	MT104	1	1	1	Α	C>T
2016	Hanoi	29 y/F	3 doses	Positive	MT104	1	1	1	В	C>T
2017	Thai Binh	4 m/F	2 doses	Positive	MT104	NA	1	1	В	C>T
2017	Hanoi	2 m/F	0	Negative	NA	ND	ND	ND	ND	ND
2017	Cao Bang	11 m/M	Unknown	Negative	NA	ND	ND	ND	ND	ND
2017	Cao Bang	3 y/M	3 doses	Negative	Novel type C	1	1	1	Α	С
2017	Cao Bang	4 y/F	3 doses	Negative	NA	ND	ND	ND	ND	ND
2017	Cao Bang	2 m/F	0	Negative	Novel type C	1	1	1	Α	С
2017	Hanoi	2 y/M	3 doses	Negative	MT27	3	1	2	А	С
2017	Vinh Phuc	8 y/F	3 doses	Negative	MT27	3	1	2	А	С
2017	Vinh Phuc	2 m/M	0	Negative	MT27	3	1	2	Α	С
2017	Hai Duong	4 m/F	2 doses	Negative	MT28	3	1	NA	В	С
2017	Thai Binh	4 m/M	1 dose	Negative	NA	ND	ND	ND	ND	ND
2017	Thai Binh	3 m/M	1 dose	Negative	MT27	3	1	2	A	С
2017	Hai Duong	45 d/M	0	Negative	MT28	3	1	2	A	NA
2017	Hanoi	3 m/F	1 dose	Negative	NA	ND	ND	ND	ND	ND
2017	Thai Binh	31 d/M	0	Negative	Novel type D	3	1	2	A	NA
2017	Hai Duong	52 d/M	0	Negative	NA	ND	ND	ND	ND	ND
2017	Cao Bang	6 y/M	3 doses	Negative	NA	ND	ND	ND	ND	ND
2017	Ha Giang	5 m/M	Unknown	Negative	NA	ND	ND	ND	ND	ND
2017	Ha Giang	18 m/F	3 doses	Negative	NA	ND	ND	ND	ND	ND
2017	Ha Tinh	2 m/M	Unknown	Negative	NA	ND	ND	ND	ND	ND
2017	Hanoi	20 m/F	3 doses	Negative	NA	ND	ND	ND	ND	ND
2017	Ninh Binh	4 m/F	1 dose	Negative	MT27	3	1	2	A	С
2017	Cao Bang	4.5 y/M	3 doses	Negative	MT27	3	1	NA	NA	NA
2017	Hai Duong	2 m/M	0	Negative	NA	ND	ND	ND	ND	ND
2017	Hai Duong	2 m/M	0	Negative	Novel type C	1	1	1	A	С
2017	Hai Duong	4 m/M	2 doses	Negative	MT27	3	1	2	A	С
2017	Hanoi	2 m/F	0	Negative	MT27	3	1	NA	В	С
2017	Hanoi	3 m/F	1 dose	Negative	NA	ND	ND	ND	ND	ND
2017	Ha Nam	52 d/F	0	Positive	MT104	1	1	1	A	C>T
2017	Tuyen Quang	45 d/F	Unknown	Negative	NA	ND	ND	ND	ND	ND
2017	Hanoi	3 m/M	1 dose	Positive	MT104	1	1	1	A	C>T
2017	Hanoi	23 y/F	3 doses	Negative	MT27	NA	1	NA	В	NA
2017	Hanoi	3 m/F	1 dose	Negative	MT28	NA	1	NA	NA	NA
2017	Hanoi	3 m/M	1 dose	Positive	MT104	1	1	1	A	C>T
2017	Son La	2.5 m/M	0	Negative	MT27	3	1	2	NA	C
2017	Hanoi	45 d/M	0	Negative	NA	ND	ND	ND	ND	ND
2017	Hanoi	3.5 m/M	1 dose	Negative	NA	ND	ND	ND	ND	ND
2017	Hanoi	3 m/F	1 dose	Negative	NA	ND	ND	ND	ND	ND
2018	Ninh Binh	28 d/M	0	Negative	NA	ND	ND	ND	ND	ND

Appendix Table. Analysis of Bordetella pertussis in the DNA samples collected from 53 pertussis patients, Vietnam, 2016–2018*

*MLVA, multilocus variable-number tandem repeat analysis; NA, not analyzed; ND, not determined. †The allelic genes were analyzed only in DNA samples that yielded a complete MLVA profile. ‡*fhaB3* allele carries the SNP mutation C5330T.

Appendix Figure 1. Geographic location of the 53 pertussis patients investigated in a study of macrolideresistant *Bordetella pertussis*, Vietnam, 2016–2018. Red and blue circles indicate patients positive and negative for the macrolide-resistant A2047G mutation, respectively.

Appendix Figure 2. Minimum spanning tree revealing the genetic diversity of the *Bordetella pertussis* population, Vietnam, 2016–2017. Of the 53 DNA samples, 33 yielded a complete multilocus variablenumber tandem repeat analysis profile by direct genotyping and were classified into 8 multilocus variablenumber tandem repeat analysis types (MTs). The gray background represents macrolide-resistant *B. pertussis* carrying the A2047G mutation in the 23S rRNA (MT104, and novel genotypes A and B). The colors of the circles represent different allele profiles of the virulence-associated allelic genes (*ptxP/ptxA/prn/fim3*). Solid lines separate single-locus variants, dotted lines separate double-locus variants. Thick lines represent differences of one repeat at 1 variable-number tandem repeat.