
The term “microbial dark matter” refers to organ-
isms that cannot easily be cultured under avail-

able laboratory conditions (1). The knowledge that 
microbial dark matter exists is not new; some of these 
organisms have been responsible for human infec-
tions throughout the history of microbiology. Indeed, 
Robert Koch himself recognized that the postulates 
he proposed to demonstrate causality between a mi-
croorganism and a disease were not fulfilled in sev-
eral common diseases, including malaria and leprosy 
(2). One major reason was difficulty in cultivating the 
responsible organisms. 

Difficult-to-isolate organisms continue to be re-
sponsible for serious human infections, such as lep-
tospirosis, syphilis, and many others (3,4). In fact, 
organisms that cause even such relatively common 
and potentially deadly syndromes as neonatal sep-
sis (NS) often constitute microbial dark matter, not  

because they cannot in theory be cultured but be-
cause in actual cases of NS these organisms are 
rarely recovered and identified. Organisms that are 
known to commonly cause NS in some areas of the 
world include Escherichia coli, group B Streptococcus, 
Klebsiella spp., and Staphylococcus aureus (5). How-
ever, because in most cases of NS worldwide we do 
not identify the organisms involved, we often cannot 
determine optimal treatments for NS or design suc-
cessful prevention strategies. This problem is com-
pounded by the fact that the organisms known to 
be frequently associated with NS differ in different 
parts of the world (5,6). 

The inability to properly diagnose or treat NS 
constitutes a substantial global health issue. NS af-
fects ≈3 million neonates per year worldwide (7) and 
causes ≈750,000 deaths per year worldwide; rates of 
death are highest in sub-Saharan Africa (8). Children 
who do survive are at risk for deadly or debilitating 
sequelae, such as cerebral palsy, seizures, cognitive 
delays, respiratory disease (9), and postinfectious hy-
drocephalus (10,11). Thus, timely and effective treat-
ment of NS is imperative to prevent death and reduce 
sequelae, but when the causative organisms cannot 
be determined, optimal medical management of NS 
is problematic. 

Current State of Diagnosis in NS 
Several studies illustrate the low organism recovery 
rates from NS cultures. One, a large retrospective 
study from the United Kingdom, found that the pro-
portion of blood cultures positive for the putative 
pathogen in individual cases ranged from 0.8% at 
birth to 15% on day 7 of life (12). A recent study from 
rural Cambodia determined that only 2% of blood 
cultures from neonates were positive for a pathogen; 
10% of those cultures—5 times as many—were posi-
tive for likely contaminants (13). Similarly, in the re-
cent ANISA (Aetiology of Neonatal Infection in South 
Asia) study on the causes and incidence of communi-
ty-acquired serious infections among young children 
in South Asia, in which blood cultures were obtained 
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Neonatal sepsis (NS) kills 750,000 infants every year. 
Effectively treating NS requires timely diagnosis and an-
timicrobial therapy matched to the causative pathogens, 
but most blood cultures for suspected NS do not recover 
a causative pathogen. We refer to these suspected but 
unidentified pathogens as microbial dark matter. Given 
these low culture recovery rates, many non–culture-
based technologies are being explored to diagnose NS, 
including PCR, 16S amplicon sequencing, and whole 
metagenomic sequencing. However, few of these new-
er technologies are scalable or sustainable globally. To 
reduce worldwide deaths from NS, one possibility may 
be performing population-wide pathogen discovery. Be-
cause pathogen transmission patterns can vary across 
space and time, computational models can be built to 
predict the pathogens responsible for NS by region and 
season. This approach could help to optimally treat pa-
tients, decreasing deaths from NS and increasing anti-
microbial stewardship until effective diagnostics that are 
scalable become available globally. 
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in a sterile manner from >4,800 infants with suspect-
ed bacterial infection, only 2.1% of cultures were true 
positives (14). 

One reason for the low recovery rates is that, al-
though blood cultures are the gold standard for dis-
covering bacterial pathogens causing NS, their sensi-
tivity can be extremely low (15). Blood culturing may 
fail to identify NS pathogens, in part because very low 
levels of bacteremia can cause symptoms in neonates 
(9,16), and in part because it is difficult to obtain suf-
ficient blood for sensitive culture recovery from small 
neonates. Furthermore, even if the blood obtained 
does contain bacteria known to cause NS, these bac-
teria may not grow well in culture (17). In addition, 
nonbacterial pathogens that do not grow in common 
culture media can cause NS symptoms; these include 
viruses such as enteroviruses, rhinoviruses, and coro-
naviruses (18,19), fungi such as Candida sp. (19), and 
parasites such as Plasmodium, the agent responsible 
for malaria (20). Finally, any antimicrobial treatment 
administered before blood is collected further reduc-
es the chances of recovering pathogens using cultur-
ing techniques (15). 

This inability to identify pathogens in many 
cases has serious clinical implications. For most NS 
cases, clinicians must balance the opposing risks of 
undertreating a serious bacterial infection or using 
broad-spectrum antimicrobial drugs that may be un-
necessary in many cases. Use of narrow-spectrum 
antimicrobial drugs without knowing the organisms 
responsible increases the risk of providing ineffective 
therapy, which is associated with increased risk for 
death, infectious complications, and treatment failure 
(21). On the other hand, routinely using broad-spec-
trum antimicrobial drugs when pathogens cannot 
be identified can drive antimicrobial resistance (22), 
which runs increasingly high in underresourced ar-
eas of the world (23). Antimicrobial stewardship is es-
pecially important in these communities due to limit-
ed access to the newer antimicrobial drugs needed to 
treat multidrug-resistant bacterial infections (24,25). 

Moreover, because the epidemiology of NS var-
ies worldwide (6), treatment decisions in a particular 
geographic location cannot be made simply on the 
basis of the pathogens recovered in other settings. For 
example, although group B Streptococcus is a leading 
cause of NS in Europe and North America, it does not 
seem to be a dominant cause of NS in many other re-
gions of the world (26). Furthermore, recommenda-
tions that culture-negative NS be treated with short 
courses of narrow spectrum antimicrobials may not 
be appropriate for the low-resource settings where 
most NS cases occur (5,22). 

Another issue complicating diagnosis and treat-
ment is that NS can sometimes have polymicrobial 
causes (27–29). Polymicrobial infections tend to be 
more severe and harder to treat than monomicrobial 
infections (27,30). The true rate of polymicrobial NS 
might be higher than that reported in the studies cit-
ed because 1 organism may outcompete the others in 
culture and because of the detection difficulties de-
tailed. This failure to identify all of the causal organ-
isms may further contribute to inadequate treatment. 

Limitations of Emerging Technologies for  
Detecting Pathogens 
Because of the low recovery rate of cultures (15), there 
has been intense interest in developing alternative 
methods for diagnosing febrile illnesses, including 
NS (9). In theory, some of these newer technologies 
could be used to more effectively diagnose the causes 
of NS when a bacterial culture fails to yield results; 
that is, they could help to address the problem of 
microbial dark matter in NS diagnosis. All of these 
methods, however, have critical drawbacks. 

One group of methods relies on targeted PCR to 
amplify and detect the DNA or RNA of specific or-
ganisms from body fluids such as blood or cerebro-
spinal fluid (CSF) (31). However, PCR-based assays 
can only detect the specific organisms that are tar-
geted by the assay; thus, one cannot discover patho-
gens that were not expected a priori. This method 
would be most beneficial when the epidemiology of 
NS is already well-established for a particular popu-
lation. A similar principle applies for detecting anti-
microbial resistance genes; PCRs can uncover only 
the resistance genes that they are targeted to detect. 
Moreover, given that there are now thousands of 
known antimicrobial resistance genes, it would be 
very difficult to test for all of these genes individu-
ally using PCR, and it remains a challenge for qPCR. 
Furthermore, novel mutations conferring antimicro-
bial resistance would still be missed. 

Another approach is 16S amplicon sequencing 
using PCR to amplify the common 16S ribosomal 
gene shared by all bacteria. DNA sequencing of this 
PCR product is then used to identify the specific bac-
teria (32). 16S amplicon techniques can, in theory, 
uncover bacterial pathogens in an unbiased man-
ner. However, contamination from clinical collection, 
laboratory reagents, or the laboratory environment 
can dominate the sequencing results if pathogen 
sequences in the patient sample are present in very 
low concentrations (31), which is often the case in 
NS. Bacterial DNA can be present in minute quanti-
ties and therefore difficult to detect within the much 
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greater mass of contaminant bacterial DNA acquired 
during routine sequencing workflows (32). 

Methods have been developed to remove some 
of this contamination, either during the sample 
preparation process before amplification and se-
quencing occur (33,34) or during the computational 
analysis after sequencing (35). In either case, suit-
able negative and positive controls are crucial for 
accurate analysis because blood from apparently 
healthy patients can harbor bacterial sequences 
(36). For NS studies, healthy NS-negative infants 
from similar environments would be ideal clinical 
controls, but blood and CSF from healthy infants 
are rarely sampled. Another control option would 
be age-matched infants whose blood and CSF sam-
ples were taken for reasons unrelated to NS, such 
as for elective surgery. 

Yet another alternative for pathogen discovery 
is sequencing the bulk DNA or RNA, or both, con-
tained in the sample. After filtering out the human 
DNA or RNA, remaining sequences can be analyzed 
to detect bacteria, viruses, fungi, and parasites (37). 
Some of these sequencing approaches include enrich-
ment steps to increase the detection of viral sequences 
in an otherwise overwhelming background of host 
sequences (38). Sequencing total DNA and RNA is 
especially attractive for unbiased discovery of panmi-
crobial pathogens and can additionally detect poly-
microbial infections. In theory, sequencing total DNA 
and RNA makes it possible to retrieve nucleic acid se-
quences from all pathogens, regardless of kingdom. 
Sequencing of total DNA can also detect antimicro-
bial resistance genes and therefore guide treatment 
(39,40). However, sequencing total DNA and RNA 
has its own challenges, including biases potentially 
being introduced during sample preparation and by 
inadequate depth of sequencing, as well as by the cur-
rent absence of standardized software tools and pipe-
lines for sequence analysis (41,42). In addition, issues 
with contamination and lack of suitable negative con-
trols likewise apply to this method. 

Although there are case reports of whole ge-
nome sequencing leading to actionable diagnosis 
in the face of negative blood cultures (43,44), these 
methods are not yet ready to be implemented in 
routine diagnostics. The more complex sequencing 
techniques, though effective in certain cases, remain 
research laboratory endeavors at the moment. Even 
if some of these sequencing-based assays could be in-
corporated into a diagnostic workflow, the high cost, 
technical optimization required, and bioinformatic 
and statistical expertise needed to analyze complex 
sequencing data currently make this technology  

impractical, even in high-resource settings. There-
fore, unbiased pathogen discovery technology is at 
present neither scalable nor sustainable on a global 
level and remains difficult to implement effectively 
in the resource-poor countries where incidence and 
death from NS are highest. 

Moving Forward in Neonatal Sepsis Diagnosis 
Until lower-cost solutions can be disseminated, 
pathogen discovery requiring costly and sophisticat-
ed technology might need to be performed at research 
laboratories or specialized institutions remote from 
clinical centers, which means that discovery cannot 
be done effectively in real time. Therefore, reducing 
neonatal death worldwide from infections caused by 
microbial dark matter might require a paradigm shift. 

Population-wide discovery of NS pathogens may 
be a way forward. Hundreds of blood or CSF samples 
with proper controls can be collected from regional 
treatment sites and analyzed by sophisticated se-
quencing methods at separate pathogen discovery 
centers. Population-wide results defining the proba-
bilistic distributions of likely pathogens by location 
could then be used to inform the most effective treat-
ment strategies, including antimicrobial choices, at 
the point of care. In other words, clinicians would bet-
ter know which organisms would be the most likely 
to cause NS in their patient population and, therefore, 
which antimicrobials from their often limited choices 
would most effectively treat the NS. Such knowledge 
would increase clinicians’ ability to optimize treat-
ment and reduce illness and death from NS. We call 
this approach predictive personalized public health. 

If pathogen transmission patterns were stable 
across time, discovering the organisms causing NS 
would only need to be done once. However, the 
pathogens responsible for NS may differ by season, 
akin to the seasonally varying distribution of patho-
gens responsible for diseases such as cholera, malar-
ia, and melioidosis (45–47).  Therefore, being able to 
predict the pathogens most likely responsible for NS, 
or any other syndromic disease, based on the season 
as well as the patient’s geographic location would be 
ideal. Predictive computational models of the diseas-
es in question could be developed to identify the most 
likely pathogens for a specific region at a specific time 
of year. Combined with data on a pathogen’s resis-
tance to specific antimicrobial drugs, this approach 
could optimize the use of broad- versus narrow-spec-
trum antimicrobial drugs to improve both treatment 
outcomes and antimicrobial stewardship. 

The feasibility of initiating such an organism 
discovery and modeling approach has been recently 
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shown in Uganda. Over the past few decades, in 
thousands of cases of infant postinfectious hydro-
cephalus resulting from neonatal sepsis, CSF samples 
have failed to yield any positive cultures (10; S.J. 
Schiff, unpub. data). However, more recently, ad-
vanced genomic techniques were used to identify a 
difficult-to-culture novel bacterial strain, Paenibacillus 
thiaminolyticus Mbale (48), and demonstrate frequent 
co-infection with human herpesvirus 5 (cytomegalo-
virus) in many of these infants with postinfectious 
hydrocephalus (49). Spatial GPS data demonstrated 
that, compared to control cases, the bacterial infec-
tions were localized to the swampy regions north and 
south of the banks of Lake Kyoga (p<0.03), whereas 
the cytomegalovirus infections were distributed 
widely (49). The statistically significant spatial dis-
crimination of infection locations by GPS demon-
strated in these cases, combined with an established 
association of rainfall with infant postinfectious hy-
drocephalus in Uganda (50), highlights the substan-
tial potential for predictive models to optimize point-
of-care treatment. 

In conclusion, for syndromic illnesses such as 
NS that are not linked to a specific pathogen, effec-
tive diagnostics to identify microbial dark matter and 
guide treatment are urgently needed. However, until 
point-of-care molecular diagnostics can be sustain-
ably implemented in regions of the world with the 
greatest disease burden, alternative predictive treat-
ment models such as the one we described may help 
to reduce illness and death. 
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