Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 3—March 2020

Mycobacterium tuberculosis Complex Lineage 3 as Causative Agent of Pulmonary Tuberculosis, Eastern Sudan1

Yassir A. ShuaibComments to Author , Eltahir A.G. Khalil, Lothar H. Wieler, Ulrich E. Schaible, Mohammed A. Bakheit, Saad E. Mohamed-Noor, Mohamed A. Abdalla, Glennah Kerubo, Sönke Andres, Doris Hillemann, Elvira Richter, Katharina Kranzer, Stefan Niemann2, and Matthias Merker2Comments to Author 
Author affiliations: Freie Universität Berlin, Berlin, Germany (Y.A. Shuaib, L.H. Wieler); Research Center Borstel, Borstel, Germany (Y.A. Shuaib, U.E. Schaible, S. Andres, D. Hillemann, S. Niemann, M. Merker); Sudan University of Science and Technology, Khartoum, Sudan (Y.A. Shuaib, S.E. Mohamed-Noor, M.A. Abdalla); University of Khartoum, Khartoum, Sudan (E.A.G. Khalil, M.A. Bakheit); Robert Koch Institute, Berlin (L.H. Wieler); Kenyatta University, Nairobi, Kenya (G. Kerubo); Labor Limbach, Heidelberg, Germany (E. Richter); London School of Hygiene and Tropical Medicine, London, UK (K. Kranzer); German Center for Infection Research, Borstel Site, Borstel (S. Niemann, M. Merker)

Main Article

Figure 1

Work flow for study of Mycobacterium tuberculosis complex lineage 3 as causative agent of pulmonary tuberculosis, eastern Sudan. LPAs, HAIN line probe assay for GenoType CM and GenoType MTBC; MGIT, mycobacteria growth indicator tube; MTBC, Mycobacterium tuberculosis complex; mix, 2 different bacteria grew on the same culture; NALC-NaOH, sodium hydroxide/N-acetyl-cysteine; NTM, nontuberculous mycobacteria; pDST, phenotypic drug susceptibility testing; WGS, whole genome sequencing. Adopted from Sh

Figure 1. Work flow for study of Mycobacterium tuberculosis complex lineage 3 as causative agent of pulmonary tuberculosis, eastern Sudan. LPAs, HAIN line probe assay for GenoType CM and GenoType MTBC; MGIT, mycobacteria growth indicator tube; MTBC, Mycobacterium tuberculosis complex; mix, 2 different bacteria grew on the same culture; NALC-NaOH, sodium hydroxide/N-acetyl-cysteine; NTM, nontuberculous mycobacteria; pDST, phenotypic drug susceptibility testing; WGS, whole genome sequencing. Adopted from Shuaib et al. (14).

Main Article

  1. World Health Organization. Global tuberculosis report. 2019 Sep 26 [cited 2019 Oct 30].
  2. World Health Organization. Global tuberculosis report. 2012 Oct 17 [cited 2019 Mar 10].
  3. Abdallah  TM, Ali  AA. Epidemiology of tuberculosis in Eastern Sudan. Asian Pac J Trop Biomed. 2012;2:9991001. DOIPubMedGoogle Scholar
  4. Muna  OA. Determination of the prevalence of tuberculosis with drug-resistant strains of Mycobacterium tuberculosis in Khartoum, Gazira and camps for displaced people, Sudan. Oslo: Faculty of Medicine, University of Oslo; 2002.
  5. Sharaf Eldin  GS, Fadl-Elmula  I, Ali  MS, Ali  AB, Salih  AL, Mallard  K, et al. Tuberculosis in Sudan: a study of Mycobacterium tuberculosis strain genotype and susceptibility to anti-tuberculosis drugs. BMC Infect Dis. 2011;11:219. DOIPubMedGoogle Scholar
  6. Hassan  SO, Musa  MT, Elsheikh  HM, Eleragi  AM, Saeed  OK. Drug resistance in Mycobacterium tuberculosis isolates from northeastern Sudan. Br J Med Res. 2012;2:42433. DOIGoogle Scholar
  7. Abdul-Aziz  AA, Elhassan  MM, Abdulsalam  SA, Mohammed  EO, Hamid  ME. Multi-drug resistance tuberculosis (MDR-TB) in Kassala state, eastern Sudan. Trop Doct. 2013;43:6670. DOIPubMedGoogle Scholar
  8. Khalid  FA, Hamid  ZA, Mukhtar  MM. Tuberculosis drug resistance isolates from pulmonary tuberculosis patients, Kassala State, Sudan. Int J Mycobacteriol. 2015;4:447. DOIPubMedGoogle Scholar
  9. Nour  EMM, Saeed  EMA, Zaki  AZSA, Saeed  NS. Drug resistance patterns of Mycobacterium tuberculosis isolates from patients with pulmonary tuberculosis in the Sudan. IOSR Journal of Dental and Medical Sciences. 2015;14:179.
  10. Eldirdery  MM, Intisar  EA, Mona  OA, Fatima  AK, Asrar  MA, Nuha  YI, et al. Prevalence of multidrug-resistant tuberculosis among smear positive pulmonary tuberculosis patients in eastern Sudan. Afr J Microbiol Res. 2017;5:326.
  11. Auld  SC, Kasmar  AG, Dowdy  DW, Mathema  B, Gandhi  NR, Churchyard  GJ, et al. Research roadmap for tuberculosis transmission science: where do we go from here and how will we know when we’re there? J Infect Dis. 2017;216(suppl_6):S662–8.
  12. Walker  TM, Ip  CL, Harrell  RH, Evans  JT, Kapatai  G, Dedicoat  MJ, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis. 2013;13:13746. DOIPubMedGoogle Scholar
  13. Merker  M, Kohl  TA, Niemann  S, Supply  P. The evolution of strain typing in the Mycobacterium tuberculosis complex. Adv Exp Med Biol. 2017;1019:4378. DOIPubMedGoogle Scholar
  14. Shuaib  YA, Khalil  EAG, Schaible  UE, Wieler  LH, Bakheit  MAM, Mohamed-Noor  SE, et al. Smear microscopy for diagnosis of pulmonary tuberculosis in eastern Sudan. Tuberc Res Treat. 2018;2018:8038137. DOIPubMedGoogle Scholar
  15. Khalid  FA, Gasmelseed  N, Hailu  E, Eldirdery  MM, Abebe  M, Berg  S, et al. Molecular identification of Mycobacterium tuberculosis causing Pulmonary Tuberculosis in Sudan. Eur Acad Res. 2016;4:784255.PubMedGoogle Scholar
  16. Gröschel  MI, Walker  TM, van der Werf  TS, Lange  C, Niemann  S, Merker  M. Pathogen-based precision medicine for drug-resistant tuberculosis. PLoS Pathog. 2018;14:e1007297. DOIPubMedGoogle Scholar
  17. Meehan  CJ, Goig  GA, Kohl  TA, Verboven  L, Dippenaar  A, Ezewudo  M, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol. 2019;17:53345. DOIPubMedGoogle Scholar
  18. Siddiqi  S, Rüsch-Gerdes  S. MGIT TM Procedure Manual. Geneva: Foundation for Innovative New Diagnostics (FIND); 2006.
  19. Deutsches Institut für Normung. Medical microbiology—diagnosis of tuberculosis. Part 3: detection of mycobacteria by culture methods. Berlin: The Institute; 2011.
  20. Somerville  W, Thibert  L, Schwartzman  K, Behr  MA. Extraction of Mycobacterium tuberculosis DNA: a question of containment. J Clin Microbiol. 2005;43:29967. DOIPubMedGoogle Scholar
  21. Hillemann  D, Warren  R, Kubica  T, Rüsch-Gerdes  S, Niemann  S. Rapid detection of Mycobacterium tuberculosis Beijing genotype strains by real-time PCR. J Clin Microbiol. 2006;44:3026. DOIPubMedGoogle Scholar
  22. Richter  E, Niemann  S, Gloeckner  FO, Pfyffer  GE, Rüsch-Gerdes  S. Mycobacterium holsaticum sp. nov. Int J Syst Evol Microbiol. 2002;52:19916.PubMedGoogle Scholar
  23. Rüsch-Gerdes  S, Pfyffer  GE, Casal  M, Chadwick  M, Siddiqi  S. Multicenter laboratory validation of the BACTEC MGIT 960 technique for testing susceptibilities of Mycobacterium tuberculosis to classical second-line drugs and newer antimicrobials. J Clin Microbiol. 2006;44:68892. DOIPubMedGoogle Scholar
  24. Ängeby  K, Juréen  P, Kahlmeter  G, Hoffner  SE, Schön  T. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ. 2012;90:6938. DOIPubMedGoogle Scholar
  25. Heyckendorf  J, Andres  S, Köser  CU, Olaru  ID, Schön  T, Sturegård  E, et al. What is resistance? Impact of phenotypic versus molecular drug resistance testing on therapy for multi- and extensively drug-resistant tuberculosis. Antimicrob Agents Chemother. 2018;62:e0155017. PubMedGoogle Scholar
  26. Merker  M, Barbier  M, Cox  H, Rasigade  JP, Feuerriegel  S, Kohl  TA, et al. Compensatory evolution drives multidrug-resistant tuberculosis in Central Asia. eLife. 2018;7:e38200. DOIPubMedGoogle Scholar
  27. Kohl  TA, Utpatel  C, Schleusener  V, De Filippo  MR, Beckert  P, Cirillo  DM, et al. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ. 2018;6:e5895. DOIPubMedGoogle Scholar
  28. Price  MN, Dehal  PS, Arkin  AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. DOIPubMedGoogle Scholar
  29. He  Z, Zhang  H, Gao  S, Lercher  MJ, Chen  WH, Hu  S. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016;44(W1):W236-41. DOIPubMedGoogle Scholar
  30. Kannan  L, Wheeler  WC. Maximum parsimony on phylogenetic networks. Algorithms Mol Biol. 2012;7:9. DOIPubMedGoogle Scholar
  31. Feuerriegel  S, Schleusener  V, Beckert  P, Kohl  TA, Miotto  P, Cirillo  DM, et al. PhyResSE: a Web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol. 2015;53:190814. DOIPubMedGoogle Scholar
  32. Kim  HY. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor Dent Endod. 2017;42:1525. DOIPubMedGoogle Scholar
  33. Coll  F, McNerney  R, Guerra-Assunção  JA, Glynn  JR, Perdigão  J, Viveiros  M, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4812. DOIPubMedGoogle Scholar
  34. Meehan  CJ, Moris  P, Kohl  TA, Pečerska  J, Akter  S, Merker  M, et al. The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology. EBioMedicine. 2018;37:4106. DOIPubMedGoogle Scholar
  35. Eldirdery  MM, Alrayah  IE, ElkareIm  MOA, Khalid  FA, Elegail  AMA, Ibrahim  NY, et al. Genotyping of pulmonary Mycobacterium tuberculosis isolates from Sudan using spoligotyping. Am J Microbiol Res. 2015;3:1258.PubMedGoogle Scholar
  36. Couvin  D, Reynaud  Y, Rastogi  N. Two tales: Worldwide distribution of Central Asian (CAS) versus ancestral East-African Indian (EAI) lineages of Mycobacterium tuberculosis underlines a remarkable cleavage for phylogeographical, epidemiological and demographical characteristics. PLoS One. 2019;14:e0219706. DOIPubMedGoogle Scholar
  37. Stucki  D, Brites  D, Jeljeli  L, Coscolla  M, Liu  Q, Trauner  A, et al. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet. 2016;48:153543. DOIPubMedGoogle Scholar
  38. Abu Shanab  ME. Defaulting to anti-tuberculosis treatment: proportional and associated factors among internally displaced people around Khartoum state. Khartoum (Sudan): Faculty of Public and Environmental Health, University of Khartoum; 2003.
  39. Ali  AO, Prins  MH. Patient non adherence to tuberculosis treatment in Sudan: socio demographic factors influencing non adherence to tuberculosis therapy in Khartoum State. Pan Afr Med J. 2016;25:80. PubMedGoogle Scholar
  40. Giampaglia  CM, Martins  MC, Vieira  GB, Vinhas  SA, Telles  MA, Palaci  M, et al. Multicentre evaluation of an automated BACTEC 960 system for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis. 2007;11:98691.PubMedGoogle Scholar
  41. CRyPTIC Consortium and the 100,000 Genomes Project. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med. 2018;379:140315. DOIGoogle Scholar
  42. Andres  S, Gröschel  MI, Hillemann  D, Merker  M, Niemann  S, Kranzer  K. A diagnostic algorithm to investigate pyrazinamide and ethambutol resistance in rifampin-resistant Mycobacterium tuberculosis isolates in a low-incidence setting. Antimicrob Agents Chemother. 2019;63:e0179818.PubMedGoogle Scholar

Main Article

1Preliminary results from this study were presented at the 39th Annual Congress of the European Society of Mycobacteriology, July 1–4, 2018, Dresden, Germany.

2These authors contributed equally to this article.

Page created: February 20, 2020
Page updated: February 20, 2020
Page reviewed: February 20, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.