Volume 26, Number 6—June 2020
Perspective
Identifying and Interrupting Superspreading Events—Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2
Table
Factors that increase the risk for superspreading events and implications for prevention and control of COVID-19*
Factor | Disease | Epidemiologic role | Implications for control of COVID-19 |
---|---|---|---|
Pathogen |
Tuberculosis |
Certain strains of Mycobacterium tuberculosis are more infectious, and patients ill with these strains should be prioritized for examination of a larger circle of contacts (21,22) |
Continued monitoring for genetic change and for changes in the epidemiology of transmission |
Host |
Influenza |
Viral shedding and risk for transmission among asymptomatic and presymptomatic persons can result in influenza transmission (23), particularly in closed settings with minimal ventilation (H. Nishiura et al., unpub. data, https://doi.org/10.1101/2020.02.28.20029272) |
Identification of factors associated with increased transmissibility and rapid intervention to prevent transmission from similar patients prospectively; further characterization of risk for asymptomatic transmission |
Environment |
SARS |
Airborne transmission of SARS can result in environmental spread of disease in community (24) and healthcare settings (25) |
Assess changes in plumbing and ventilation that may be needed to reduce risk for spread; increase social distancing; reduce mass gatherings in closed environments; ensure effective triage, isolation, and general infection control in healthcare facilities |
Behavior |
Ebola |
Inaccurate perceptions of Ebola risk can result in behaviors that increase the probability of transmission (26,27) |
Promote handwashing, cough etiquette, and safer care-seeking behavior, including mask-wearing by persons who are ill, and ensure that timely and accurate messaging about risk and behavioral preventive measures are tailored to and reach affected populations |
Response | MERS | Timely implementation of control measures can reduce outbreak duration and number of transmission events (28) | Rapidly identify and isolate cases to reduce transmission; implement large-scale NPIs in affected areas within 1 week |
*COVID-19, coronavirus disease; MERS, Middle East respiratory syndrome; NPIs, nonpharmaceutical interventions; SARS, severe acute respiratory syndrome.
References
- World Health Organization. Coronavirus disease 2019 (COVID-19) situation reports, 2020 [cited 2020 Mar 8]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
- Why 14 doctors in Wuhan were infected: no eyepieces and masks were worn during surgery Shanghai: Shanghai First Finance Media Limited, January 22, 2020 [cited 2020 Mar 8]. https://www.yicai.com/news/100477916.html
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 [Epub ahead of print].
- South Korean city on high alert as coronavirus cases soar at ‘cult’ church. New York: The Guardian, February 20, 2020 [cited 2020 Mar 8]. https://www.theguardian.com/world/2020/feb/20/south-korean-city-daegu-lockdown-coronavirus-outbreak-cases-soar-at-church-cult-cluster
- Wong G, Liu W, Liu Y, Zhou B, Bi Y, Gao GF. MERS, SARS, and Ebola: the role of super-spreaders in infectious disease. Cell Host Microbe. 2015;18:398–401. DOIPubMedGoogle Scholar
- Lau MS, Dalziel BD, Funk S, McClelland A, Tiffany A, Riley S, et al. Spatial and temporal dynamics of superspreading events in the 2014-2015 West Africa Ebola epidemic. Proc Natl Acad Sci U S A. 2017;114:2337–42. DOIPubMedGoogle Scholar
- Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160:509–16. DOIPubMedGoogle Scholar
- Leavitt J. Typhoid Mary: captive to the public’s health. Boston: Beacon Press; 1996.
- Marineli F, Tsoucalas G, Karamanou M, Androutsos G. Mary Mallon (1869-1938) and the history of typhoid fever. Ann Gastroenterol. 2013;26:132–4.PubMedGoogle Scholar
- Prouty AM, Schwesinger WH, Gunn JS. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun. 2002;70:2640–9. DOIPubMedGoogle Scholar
- Riley RL, Mills CC, O’Grady F, Sultan LU, Wittstadt F, Shivpuri DN. Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am Rev Respir Dis. 1962;85:511–25.PubMedGoogle Scholar
- Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A. 1997;94:338–42. DOIPubMedGoogle Scholar
- Shimizu K, Kinoshita R, Yoshii K, Akhmetzhanov AR, Jung S, Lee H, et al. An investigation of a measles outbreak in Japan and China, Taiwan, China, March-May 2018. Western Pac Surveill Response J. 2018;9:25–31. DOIPubMedGoogle Scholar
- Shen Z, Ning F, Zhou W, He X, Lin C, Chin DP, et al. Superspreading SARS events, Beijing, 2003. Emerg Infect Dis. 2004;10:256–60. DOIPubMedGoogle Scholar
- Chun BC. Understanding and modeling the super-spreading events of the Middle East respiratory syndrome outbreak in Korea. Infect Chemother. 2016;48:147–9. DOIPubMedGoogle Scholar
- Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature. 2005;438:355–9. DOIPubMedGoogle Scholar
- Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020;27:
taaa021 ; Epub ahead of print. DOIPubMedGoogle Scholar - Rocklöv J, Sjödin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. J Travel Med. 2020;
taaa030 ; Epub ahead of print. DOIPubMedGoogle Scholar - Bauch CT, Lloyd-Smith JO, Coffee MP, Galvani AP. Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology. 2005;16:791–801. DOIPubMedGoogle Scholar
- Lloyd-Smith JO, Galvani AP, Getz WM. Curtailing transmission of severe acute respiratory syndrome within a community and its hospital. Proc Biol Sci. 2003;270:1979–89. DOIPubMedGoogle Scholar
- Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, et al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A. 2015;112:8136–41. DOIPubMedGoogle Scholar
- Holt KE, McAdam P, Thai PVK, Thuong NTT, Ha DTM, Lan NN, et al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet. 2018;50:849–56. DOIPubMedGoogle Scholar
- Ip DK, Lau LL, Leung NH, Fang VJ, Chan KH, Chu DK, et al. Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the community. Clin Infect Dis. 2017;64:736–42.PubMedGoogle Scholar
- Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004;350:1731–9. DOIPubMedGoogle Scholar
- Yu IT, Xie ZH, Tsoi KK, Chiu YL, Lok SW, Tang XP, et al. Why did outbreaks of severe acute respiratory syndrome occur in some hospital wards but not in others? Clin Infect Dis. 2007;44:1017–25. DOIPubMedGoogle Scholar
- Nielsen CF, Kidd S, Sillah AR, Davis E, Mermin J, Kilmarx PH; Centers for Disease Control and Prevention. Improving burial practices and cemetery management during an Ebola virus disease epidemic - Sierra Leone, 2014. MMWR Morb Mortal Wkly Rep. 2015;64:20–7.PubMedGoogle Scholar
- Faye O, Boëlle PY, Heleze E, Faye O, Loucoubar C, Magassouba N, et al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis. 2015;15:320–6. DOIPubMedGoogle Scholar
- Lee J, Chowell G, Jung E. A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events. J Theor Biol. 2016;408:118–26. DOIPubMedGoogle Scholar
- Richard M, Fouchier RA. Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev. 2016;40:68–85. DOIPubMedGoogle Scholar
- Tang X, Wu C, Li X, Song Y, Yao X, Wu X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;
nwaa036 ; [Epub ahead of print]. DOIGoogle Scholar - Yu P, Zhu J, Zhang Z, Han Y, Huang L. A familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis. 2020;
jiaa077 ; Epub ahead of print. DOIPubMedGoogle Scholar - Kupperscmidt K. Study claiming new coronavirus can be transmitted by people without symptoms was flawed. Washington: American Association for the Advancement of Science, February 3, 2020 [cited 2020 Mar 8]. https://www.sciencemag.org/news/2020/02/paper-non-symptomatic-patient-transmitting-coronavirus-wrong
- Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;Mar 3:pii: S0016-5085(20)30281-X. Epub ahead of print].
- Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020; Epub ahead of print. DOIPubMedGoogle Scholar
- Curran KG, Gibson JJ, Marke D, Caulker V, Bomeh J, Redd JT, et al. Cluster of Ebola virus disease linked to a single funeral—Moyamba District, Sierra Leone, 2014. MMWR Morb Mortal Wkly Rep. 2016;65:202–5. DOIPubMedGoogle Scholar
- Kim SW, Park JW, Jung HD, Yang JS, Park YS, Lee C, et al. Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea. Clin Infect Dis. 2017;64:551–7.PubMedGoogle Scholar
- Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis. 2020;92:214–7. DOIPubMedGoogle Scholar
- Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al.; Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health. 2020;8:e488–96; Epub ahead of print. DOIPubMedGoogle Scholar
- Park GE, Ko JH, Peck KR, Lee JY, Lee JY, Cho SY, et al. Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea. Ann Intern Med. 2016;165:87–93. DOIPubMedGoogle Scholar
- World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, January 28, 2020 [cited 2020 Mar 8]. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected
- Amer H, Alqahtani AS, Alzoman H, Aljerian N, Memish ZA. Unusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017. Am J Infect Control. 2018;46:1022–5. DOIPubMedGoogle Scholar
- Lee CT, Hagan JE, Jantsansengee B, Tumurbaatar OE, Altanchimeg S, Yadamsuren B, et al. Increase in infant measles deaths during a nationwide measles outbreak, Mongolia, 2015–2016. J Infect Dis. 2019;220:1771–9. DOIPubMedGoogle Scholar
- Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B, et al. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA. 1996;276:1229–35. DOIPubMedGoogle Scholar
- Liang W, Zhu Z, Guo J, Liu Z, Zhou W, Chin DP, et al.; Beijing Joint SARS Expert Group. Severe acute respiratory syndrome, Beijing, 2003. Emerg Infect Dis. 2004;10:25–31. DOIPubMedGoogle Scholar
- Riley S, Fraser C, Donnelly CA, Ghani AC, Abu-Raddad LJ, Hedley AJ, et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003;300:1961–6. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention (CDC). Update: Outbreak of severe acute respiratory syndrome—worldwide, 2003. MMWR Morb Mortal Wkly Rep. 2003;52:241–6, 248.PubMedGoogle Scholar
- Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, et al. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos Trans R Soc Lond B Biol Sci. 2004;359:1091–105. DOIPubMedGoogle Scholar
- Lai S, Ruktanonchai NW, Zhou L, Prosper O, Luo W, Wesolowski A, et al. Effect of nonpharmaceutical interventions for containing the COVID-19 outbreak: an observational and modelling study. World Population. 2020 Mar 4 [cited 2020 Mar 8]. https://www.worldpop.org/events/COVID_NPI
1These authors contributed equally to this article.