Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 7—July 2020

Meningococcal W135 Disease Vaccination Intent, the Netherlands, 2018–2019

Marion de VriesComments to Author , Liesbeth Claassen1, Margreet J.M. te Wierik1, Feray Coban, Albert Wong, Danielle R.M. Timmermans, and Aura Timen
Author affiliations: National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands (M. de Vries, L. Claassen, M.J.M. te Wierik, F. Coban, A. Wong, A. Timen); Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (D.R.M. Timmermans, A. Timen)

Main Article


Description of participants in study of invasive meningococcal W135 disease vaccination intent, the Netherlands, 2018–2019*

Participant No. (%)
Parents, n = 1,784*
F 991 (55.5)
M 793 (44.5)
Teenagers, n = 1,603*
F 810 (50.5)
793 (49.5)
Age, y†
12 111 (6.9)
13 611 (38.1)
14 379 (23.6)
15 175 (10.9)
16 161 (10.0)
166 (10.4)
Low 252 (14.1)
Intermediate 1,318 (73.9)
High 214 (12.0)
No current education 8 (0.5)
Primary school 12 (0.7)
Secondary school 1,406 (87.7)
Preparing for vocational education 552 (39.3)
Preparing for higher education 809 (57.5)
Combination 45 (3.2)
Vocational education 129 (8.0)
Higher education
48 (0.7)
Initial target group, born after Apr 2004 through 2005
Parents 1,177 (66.0)
1,010 (63.0)
Extended target group, cohorts born 2001 through Apr 2004
Parents 607 (34.0)
Teenagers 593 (37.0)

*Total parent–teenager pairs = 1,318 (73.9% of parents, 82.2% of teenagers).
†Parents’ age range 31–73 y; mean (± SD) age 46.5 (5.5) y.
‡Categorizations based on (34)..

Main Article

  1. Knol  MJ, Ruijs  WL, Antonise-Kamp  L, de Melker  HE, van der Ende  A. Implementation of MenACWY vaccination because of ongoing increase in serogroup W invasive meningococcal disease, the Netherlands, 2018. Euro Surveill. 2018;23:23. DOIPubMedGoogle Scholar
  2. RIVM. Meningokokken [cited 2019 Dec 12].
  3. Basta  NE, Becker  AB, Li  Q, Nederhoff  D. Parental awareness of Meningococcal B vaccines and willingness to vaccinate their teens. Vaccine. 2019;37:6706. DOIPubMedGoogle Scholar
  4. Dubé  E, Gagnon  D, Hamel  D, Belley  S, Gagné  H, Boulianne  N, et al. Parents’ and adolescents’ willingness to be vaccinated against serogroup B meningococcal disease during a mass vaccination in Saguenay-Lac-St-Jean (Quebec). Can J Infect Dis Med Microbiol. 2015;26:1637. DOIPubMedGoogle Scholar
  5. Landowska  K, Waller  J, Bedford  H, Rockliffe  L, Forster  AS. Influences on university students’ intention to receive recommended vaccines: a cross-sectional survey. BMJ Open. 2017;7:e016544. DOIPubMedGoogle Scholar
  6. Watson  PB, Yarwood  J, Chenery  K. Meningococcal B: tell me everything you know and everything you don’t know. New Zealanders’ decision-making regarding an immunisation programme. N Z Med J. 2007;120:U2751.PubMedGoogle Scholar
  7. Timmermans  DR, Henneman  L, Hirasing  RA, van der Wal  G. Parents’ perceived vulnerability and perceived control in preventing Meningococcal C infection: a large-scale interview study about vaccination. BMC Public Health. 2008;8:45. DOIPubMedGoogle Scholar
  8. Timmermans  DR, Henneman  L, Hirasing  RA, van der Wal  G. Attitudes and risk perception of parents of different ethnic backgrounds regarding meningococcal C vaccination. Vaccine. 2005;23:332935. DOIPubMedGoogle Scholar
  9. Breakwell  L, Vogt  TM, Fleming  D, Ferris  M, Briere  E, Cohn  A, et al. Understanding factors affecting University A students’ decision to receive an unlicensed serogroup B meningococcal vaccine. J Adolesc Health. 2016;59:45764. DOIPubMedGoogle Scholar
  10. Blagden  S, Seddon  D, Hungerford  D, Stanistreet  D. Uptake of a new meningitis vaccination programme amongst first-year undergraduate students in the United Kingdom: A cross-sectional study. PLoS One. 2017;12:e0181817. DOIPubMedGoogle Scholar
  11. Le Ngoc Tho  S, Ader  F, Ferry  T, Floret  D, Arnal  M, Fargeas  S, et al. Vaccination against serogroup B Neisseria meningitidis: Perceptions and attitudes of parents. Vaccine. 2015;33:346370. DOIPubMedGoogle Scholar
  12. Trayner  KM, Anderson  N, Cameron  JC. A mixed-methods study to identify factors associated with MenACWY vaccine uptake, barriers and motivations towards vaccination among undergraduate students. Health Educ J. 2019;78:189202. DOIGoogle Scholar
  13. Larson  HJ, Cooper  LZ, Eskola  J, Katz  SL, Ratzan  S. Addressing the vaccine confidence gap. Lancet. 2011;378:52635. DOIPubMedGoogle Scholar
  14. Wang  LD-L, Lam  WWT, Fielding  R. Determinants of human papillomavirus vaccination uptake among adolescent girls: A theory-based longitudinal study among Hong Kong Chinese parents. Prev Med. 2017;102:2430. DOIPubMedGoogle Scholar
  15. Hirth  JM, Batuuka  DN, Gross  TT, Cofie  L, Berenson  AB. Human papillomavirus vaccine motivators and barriers among community college students: Considerations for development of a successful vaccination program. Vaccine. 2018;36:10327. DOIPubMedGoogle Scholar
  16. Ling  M, Kothe  EJ, Mullan  BA. Predicting intention to receive a seasonal influenza vaccination using Protection Motivation Theory. Soc Sci Med. 2019;233:8792. DOIPubMedGoogle Scholar
  17. Camerini  A-L, Diviani  N, Fadda  M, Schulz  PJ. Using protection motivation theory to predict intention to adhere to official MMR vaccination recommendations in Switzerland. SSM Popul Health. 2018;7:005–5.
  18. Scherr  CL, Jensen  JD, Christy  K. Dispositional pandemic worry and the health belief model: promoting vaccination during pandemic events. J Public Health (Oxf). 2017;39:e24250.PubMedGoogle Scholar
  19. Wagner  AL, Boulton  ML, Sun  X, Mukherjee  B, Huang  Z, Harmsen  IA, et al. Perceptions of measles, pneumonia, and meningitis vaccines among caregivers in Shanghai, China, and the health belief model: a cross-sectional study. BMC Pediatr. 2017;17:143. DOIPubMedGoogle Scholar
  20. Fishbein  M, Ajzen  I. Predicting and changing behavior: the reasoned action approach. New York: Psychology Press; 2010.
  21. Morgan  MG. Risk communication: A mental models approach: Cambridge (UK): Cambridge University Press; 2002.
  22. Claassen  L, Bostrom  A, Timmermans  DR. Focal points for improving communications about electromagnetic fields and health: a mental models approach. J Risk Res. 2016;19:24669. DOIGoogle Scholar
  23. Galada  HC, Gurian  PL, Corella-Barud  V, Pérez  FG, Velázquez-Angulo  G, Flores  S, et al. Applying the mental models framework to carbon monoxide risk in northern Mexico. Rev Panam Salud Publica. 2009;25:24253. DOIPubMedGoogle Scholar
  24. Wagner  K. Mental models of flash floods and landslides. Risk Anal. 2007;27:67182. DOIPubMedGoogle Scholar
  25. Zaksek  M, Arvai  JL. Toward improved communication about wildland fire: mental models research to identify information needs for natural resource management. Risk Anal. 2004;24:150314. DOIPubMedGoogle Scholar
  26. Southwell  BG, Ray  SE, Vazquez  NN, Ligorria  T, Kelly  BJ. A mental models approach to assessing public understanding of Zika virus, Guatemala. Emerg Infect Dis. 2018;24:9389. DOIPubMedGoogle Scholar
  27. Downs  JS, de Bruin  WB, Fischhoff  B. Parents’ vaccination comprehension and decisions. Vaccine. 2008;26:1595607. DOIPubMedGoogle Scholar
  28. Bostrom  A. Vaccine risk communication: lessons from risk perception, decision making and environmental risk communication research. Risk. 1997;8:173.
  29. Bruine de Bruin  W, Bostrom  A. Assessing what to address in science communication. Proc Natl Acad Sci U S A. 2013;110(Suppl 3):140628. DOIPubMedGoogle Scholar
  30. Foundation Vaccine-Free. Stichting Vaccinvrij [cited 2018 Aug 10].
  31. Dutch Association Vaccine Critical. Nederlandse Vereniging Kritisch Prikken [cited 2018 Aug 10].
  32. Breiman  L. Random forests. Mach Learn. 2001;45:532. DOIGoogle Scholar
  33. Liaw  A, Wiener  M. Classification and regression by randomForest. R News. 2002;2:1822.
  34. Baboe Kalpoe  S, Benschop  KSM, van Benthem  BHB, Berbers  GAM, van Binnendijk  R, Bodewes  R, et al. The National Immunisation Programme in the Netherlands: surveillance and developments in 2018–2019 [cited 2020 Apr 24].
  35. Newacheck  PW, Wong  ST, Galbraith  AA, Hung  Y-Y. Adolescent health care expenditures: a descriptive profile. J Adolesc Health. 2003;32(Suppl):311. DOIPubMedGoogle Scholar
  36. Manganello  JA. Health literacy and adolescents: a framework and agenda for future research. Health Educ Res. 2008;23:8407. DOIPubMedGoogle Scholar
  37. Bijlsma  MW, Bekker  V, Brouwer  MC, Spanjaard  L, van de Beek  D, van der Ende  A. Epidemiology of invasive meningococcal disease in the Netherlands, 1960-2012: an analysis of national surveillance data. Lancet Infect Dis. 2014;14:80512. DOIPubMedGoogle Scholar
  38. Brunson  EK. The impact of social networks on parents’ vaccination decisions. Pediatrics. 2013;131:e1397404. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: April 30, 2020
Page updated: June 19, 2020
Page reviewed: June 19, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.