
Severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) is the etiologic agent of the cur-

rent rapidly growing outbreak of coronavirus disease 
(COVID-19), originating from the city of Wuhan, Hu-
bei Province, China (1). Initially, 41 cases of “pneu-
monia of unknown etiology” were reported to the 
World Health Organization by the Wuhan Munici-
pal Health Committee at the end of December 2019 
(2). On January 8, 2020, the pathogen was identified 
(1), and human-to-human transmission was reported 
soon after. By January 21, most provinces of China 
had reported COVID-19 cases. By March 16, the out-
break had led to >170,000 total confirmed cases and 
>6,500 deaths globally. In a period of 3 months, an 
outbreak of apparent idiopathic pneumonia had be-
come the COVID-19 pandemic.

Studying dynamics of a newly emerged and 
rapidly growing infectious disease outbreak, such 
as COVID-19, is important but challenging because 

of the limited amount of data available. In addi-
tion, unavailability of diagnostic reagents early 
in the outbreak, changes in surveillance intensity 
and case definitions, and overwhelmed health-
care systems confound estimates of the growth 
of the outbreak based on data. Initial estimates of 
the exponential growth rate of the outbreak were 
0.1–0.14/day (a doubling time of 6–7 days), and a 
basic reproductive number (R0; defined as the av-
erage number of secondary cases attributable to 
infection by an index case after that case is intro-
duced into a susceptible population) ranged from 
2.2 to 2.7 (1,3–5). These estimates were based on 2 
broad strategies. First, Li et al. used very early case 
count data in Wuhan before January 4 (1). Howev-
er, case count data can be confounded by reservoir 
spillover events, stochasticities in the initial phase 
of the outbreak, and low surveillance intensity. 
The epidemic curve based on symptom onset after 
January 4 showed a very different growth rate (6). 
Second, inference was performed by using inter-
national flight data and infected persons reported 
outside of China (3–5). Because of the low numbers 
of persons traveling abroad compared with the to-
tal population size in Wuhan, this approach leads 
to substantial uncertainties (7,8). Inferences based 
on a low number of observations are prone to mea-
surement error when data are incomplete or model 
assumptions are not fully justified; both conditions 
are common challenges associated with rapid and 
early outbreak analyses of a new pathogen.

We collected an expanded set of case reports 
across China on the basis of publicly available in-
formation, estimated key epidemiologic parameters, 
and provided a new estimate of the early epidemic 
growth rate and R0 in Wuhan. Our approaches are 
based on integration of high-resolution domestic 
travel data and early infection data reported in prov-
inces other than Hubei to infer outbreak dynamics in 
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Severe acute respiratory syndrome coronavirus 2 is the 
causative agent of the ongoing coronavirus disease pan-
demic. Initial estimates of the early dynamics of the out-
break in Wuhan, China, suggested a doubling time of the 
number of infected persons of 6–7 days and a basic re-
productive number (R0) of 2.2–2.7. We collected exten-
sive individual case reports across China and estimated 
key epidemiologic parameters, including the incubation 
period (4.2 days). We then designed 2 mathematical 
modeling approaches to infer the outbreak dynamics in 
Wuhan by using high-resolution domestic travel and in-
fection data. Results show that the doubling time early 
in the epidemic in Wuhan was 2.3–3.3 days. Assuming 
a serial interval of 6–9 days, we calculated a median R0 
value of 5.7 (95% CI 3.8–8.9). We further show that ac-
tive surveillance, contact tracing, quarantine, and early 
strong social distancing efforts are needed to stop trans-
mission of the virus.
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Wuhan. They are designed to be less sensitive to bi-
ases and confounding factors in the data and model 
assumptions. Without directly using case confirma-
tion data in Wuhan, we avoid the potential biases in 
reporting and case confirmation in Wuhan, whereas 
because of the high level of domestic travel before 
the Lunar New Year in China, inference based on 
these data minimizes uncertainties and risk for po-
tential misspecifications and biases in data and mod-
el assumptions.

Methods

Methodologic Overview
We developed 2 modeling approaches to infer the 
growth rate of the outbreak in Wuhan from data 
from provinces other than Hubei. In the first model, 
the first arrival model, we computed the likelihood 
of the arrival times of the first known cases in prov-
inces outside of Hubei as a function of the exponen-
tial growing population of infected persons in Wuhan 
before late January. This calculation involved using 
domestic travel data to compute the probability that 
an infected person traveled from Wuhan to a given 
province as a function of the unknown actual number 
of infected persons in Wuhan and the probability that 
they traveled. The timings of the arrivals of the first 
infected persons in different provinces would reflect 
the rate of the epidemic growth in Wuhan.

In the second model, the case count model, we ac-
counted for the detection of additional persons who 
were infected in Wuhan and received their diagnoses 
in other provinces and explicitly modeled those per-
sons by using a hybrid deterministic–stochastic SEIR 
(susceptible-exposed-infectious-recovered) model. 
We then fitted this model to new daily case count 
data reported outside Hubei Province during the pe-
riod before substantial transmission occurred outside 
of the province.

By using data collected outside Hubei Prov-
ince, we minimized the effect of changes in surveil-
lance intensity. By the time cases were confirmed 
in provinces outside Hubei, all of the provinces of 
China had access to diagnostic kits and were engag-
ing in active surveillance of travelers out of Wuhan 
(e.g., using temperatures detectors and digital data 
to identify infected persons [9]) as the outbreak un-
folded. Furthermore, the healthcare systems out-
side Hubei were not yet overwhelmed with cases 
and were actively searching for the first positive 
case, leading to much lower bias in the reporting 
in each province compared with the time series of 
confirmed cases in Wuhan.

Data

Individual Case Reports
We collected publicly available reports of 140 con-
firmed COVID-19 cases (mostly outside Hubei Prov-
ince). These reports were published by the Chinese 
Centers for Disease Control and Prevention (China 
CDC) and provincial health commissions; accession 
dates were January 15–30, 2020 (Appendix 1 Table 
1, https://wwwnc.cdc.gov/EID/article/26/7/20-
0282-App1.xlsx). Many of the individual reports 
were also published on the China CDC official 
website (http://www.chinacdc.cn/jkzt/crb/zl/
szkb_11803) and the English version of the China 
CDC weekly bulletin (http://weekly.chinacdc.cn/
news/TrackingtheEpidemic.htm). These reports 
include demographic information as well as epide-
miologic information, including potential periods 
of infection, and dates of symptom onset, hospital-
ization, and case confirmation. Most of the health 
commissions in provinces and special municipalities 
documented and published detailed information of 
the first or the first few patients with confirmed CO-
VID-19. As a result, a unique feature of this dataset 
includes case reports of many of the first or the first 
few persons who were confirmed to have SARS-
CoV-2 virus infection in each province, where dates 
of departure from Wuhan were available.

Travel Data
We used the Baidu Migration server (https://qianxi.
baidu.com) to estimate the number of daily travelers 
in and out of Wuhan (Appendix 1 Table 2). 
The server is an online platform summarizing 
mobile phone travel data hosted by Baidu Huiyan 
(https://huiyan.baidu.com).

Calculations of R0 and Effect of Intervention Strategies
We considered realistic distributions for the latent 
and infectious periods to calculate R0. We described 
the methods we used to calculate R0 and the effect of 
intervention strategies on the outbreak (Appendix 2, 
https://wwwnc.cdc.gov/EID/article/26/7/20-0282-
App2.pdf).

Results 

Estimating Distributions of Epidemiologic Parameters
We first translated reports from documents or news 
reports published daily from the China CDC web-
site and official websites of health commissions 
across provinces and special municipalities in China 
during January 15–30, 2020. Altogether, we collected 
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137 individual case reports from China and 3 addi-
tional case reports from outside of China (Appendix 
1 Table 1).

By using this dataset, we estimated the basic pa-
rameter distributions of durations from initial expo-
sure to symptom onset to hospitalization to discharge 
or death. Our estimate of the time from initial expo-
sure to symptom onset (i.e., the incubation period) 
is 4.2 days (95% CI 3.5–5.1 days) (Figure 1, panel A), 
based on 24 case reports. This estimated duration is 
generally consistent with a recent report by Guan et 
al. (10) showing that the median incubation period is 
4 days. Our estimate is ≈1 day shorter than 2 previ-
ous estimates (1,11). One potential caveat of our es-
timation is that because most of the case reports we 
collected were from the first few persons detected 
in each province, this estimation might be biased to-
ward patients with more severe symptoms if they are 
more likely to be detected.

The time from symptom onset to hospitalization 
showed evidence of time dependence (Figure 1, panel 
B; Appendix 2 Figure 1). Before January 18, the time 
from symptom onset to hospitalization was 5.5 days 
(95% CI 4.6–6.6 days), whereas after January 18, the 
duration shortened significantly to 1.5 days (95% CI 
1.2–1.9 days) (p<0.001 by Mann–Whitney U test). The 
change in the distribution coincides with news re-
ports of potential human-to-human transmission and 
upgrading of emergency response level to Level 1 by 
the China CDC. The emerging consensus about the 
risk for COVID-19 probably led to substantial behav-
ior changes among symptomatic persons, in terms of 
seeking more timely medical care during this period. 
However, because most of the individual reports 
were collected in provinces other than Hubei, the 

change in durations might only reflect changes in the 
rest of China (rather than in Hubei). We also found 
that the time from initial hospital admittance to dis-
charge was 11.5 days (95% CI 8.0–17.3 days) (Figure 1, 
panel C) and from initial hospital admittance to death 
was 11.2 days (95% CI 8.7–14.9 days) (Figure 1, panel 
D). The time from symptom onset to death was esti-
mated to be 16.1 days (95% CI 13.1–20.2 days).

Estimating the Growth Rate of the Outbreak in  
Wuhan in January 2020
Moving from empirical estimates of basic epidemio-
logic parameters to an understanding of the early 
growth rates of COVID-19 requires model-based in-
ference and data. We first collected real-time travel 
data during the epidemic by using the Baidu Migra-
tion server, which provides real-time travel patterns 
in China based on mobile-phone positioning services 
(Figure 2, panel A; Appendix 1 Methods, Table 2). 
We estimated that, before the January 23 lockdown 
of the city, ≈40,000–140,000 people in Wuhan traveled 
to destinations outside Hubei Province each day (Fig-
ure 2, panel B). The extensive travel before the Lunar 
New Year was probably an important driver of the 
spread of COVID-19 in China.

We then integrated spatiotemporal domestic 
travel data to infer the outbreak dynamics in Wuhan 
by using two mathematical approaches (Appendix 
2; conceptual framework depicted in Figure 3, panel 
A). The first-arrival model uses a unique feature of 
our case report dataset whereby the dates of depar-
ture from Wuhan for many of the first persons who 
were confirmed with SARS-CoV-2 infection in each 
province were known (Appendix 1 Table 1). We as-
sumed an exponential growth for the total infected 
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Figure 1. Epidemiologic 
characteristics of early 
dynamics of coronavirus 
disease outbreak in 
China. Distributions of key 
epidemiologic parameters: 
durations from infection 
to symptom onset (A), 
from symptom onset to 
hospitalization (B), from 
hospitalization to discharge 
(C), and from hospitalization 
to death (D). Filled circles and 
bars on x-axes denote the 
estimated means and 95% CIs.
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population I* in Wuhan, I*(t) = er(t–t0), where I* in-
cludes infected persons who are asymptomatic or 
symptomatic, r is the exponential growth rate, and t0 
is the theoretical time of the exponential growth initi-
ation, so that I*(t0) = 1 in the deterministic model. We 
call t0 a “theoretical” time in the sense that it should 
not be interpreted as the time of first infection in a 
population. We should expect that t0 is later than the 
date of the first infection because multiple spillover 
events from the animal reservoir might be needed 
to establish sustained transmission and stochasticity 
might play a large role in initial dynamics before the 
onset of exponential growth (12–14).

We used travel data for each of the provinces (Ap-
pendix 1 Table 3) and the earliest times that an infected 
person arrived in a province, across a total of 26 prov-
inces (Figure 3, panel B), to infer r and t0 (Appendix 2). 
Model predictions of arrival times in the 26 provinces 
fitted the actual data well (Appendix 2 Figure 2). The 
growth rate r is estimated to be 0.29/day (95% CI 0.21–
0.37/day), corresponding to a doubling time of 2.4 days 
(95% CI 1.9–3.3 days). t0 is estimated to be December 20, 
2019 (95% CI December 11–26). As we show later, there 
exist larger uncertainties in the estimation of t0.

We further estimated that the total infected 
population size in Wuhan was ≈4,100 (95% CI 2,423–
6,178) on January 18 (Appendix 2 Figure 3), which 
is consistent with a recently posted estimate (7). The 
estimated number of infected persons was ≈18,700 
(95% CI 7,147–38,663) on January 23 (i.e., the date 
when Wuhan started its lockdown). We projected 
that without any control measures, the infected pop-
ulation would be ≈233,400 (95% CI 38,757–778,278) 
by the end of January.

An alternative model, the case count approach, 
used daily new case counts of persons who had 
COVID-19 diagnosed in other provinces but who 
had been in Hubei Province within 14 days of be-
coming symptomatic. This model uses data be-
yond the first appearance of an infected person 
from Wuhan but also accounts for the stochastic 
nature of the process by using a hybrid model. In 
this model, the infected population in Wuhan was 
described with a deterministic model, whereas the 
infected persons who traveled from Wuhan to oth-
er provinces were tracked with a stochastic SEIR 
(susceptible-exposed-infectious-recovered) model 
(12). We restricted the data to the period of January  
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Figure 2. Extremely high level 
of travel from Wuhan, Hubei 
Province, to other provinces 
during January 2020, as 
estimated by using high-resolution 
and real-time travel data, China. 
A) A modified snapshot of the 
Baidu Migration online server 
interface showing the human 
migration pattern out of Wuhan 
(red dot) on January 19, 2020. 
Thickness of curved white lines 
denotes the size of the traveler 
population to each province. The 
names of most of the provinces 
are shown in white. B) Estimated 
daily population sizes of travelers 
from Wuhan to other provinces. 



RESEARCH

19–26, when new cases reported were mostly in-
fections imported from Wuhan (i.e., indicative of 
the dynamics in Wuhan). The transitions of the in-
fected persons from symptom onset to hospitaliza-
tion and then to case confirmation were assumed 
to follow the distributions inferred from the case 
report data (Appendix 2). Simulation of the model 
using best-fit parameters showed that the model 
described the observed case counts over time well 
(Figure 3, panel C). The estimated theoretical time 
(t0) is December 16, 2019 (95% CI December 12–21), 
and the exponential growth rate is 0.30/day (95% 
CI 0.26–0.34/day). These estimates are consistent 
with estimates in the first arrival approach (Figure 
4; Appendix 2 Figure 4).

In both models, we assumed perfect detection 
(i.e., of infected cases outside of Hubei Province). 
However, a certain fraction of cases probably was 
not reported. To investigate the robustness of our 
estimates, we performed extensive sensitivity anal-
yses to test 23 different scenarios of surveillance in-
tensity (Appendix 2). First, we tested the assump-
tion that a constant fraction of infected persons 
(e.g., persons with mild or no symptoms) (15) were 
not detected. We found that under this assumption, 
t0would be earlier than our estimate but the estima-
tion of the growth rate remained the same (Appen-
dix 1 Table 4). Second, we tested the assumption 
that the intensity of surveillance increases over the 
period of data collection, although this scenario is 
less likely because of the intensive surveillance im-
plemented outside Hubei Province. We found that 

our data in general do not support this hypothesis 
on the basis of corrected Akaike Information crite-
rion scores (Appendix 1 Table 4). However, if the 
intensity of surveillance outside Hubei Province in-
creased over the period of January, we would pre-
dict a lower growth rate than the estimate we just 
described. For the worst-case scenario considered, 
we estimated the growth rate of the outbreak to be 
0.21/day (Appendix 2).

Other Evidence of a High Growth Rate of the  
Outbreak in Wuhan
In addition to using 2 modeling approaches, we 
looked for other evidence of a high outbreak growth 
rate to cross-validate our estimations. We found that 
the time series of reported deaths in Hubei, which is 
less subject to the biases of the confirmed case counts, 
is simply not consistent with a growth rate of 0.1/
day (Appendix 2 Figure 5). As the infected popula-
tion grows, the number of death cases will grow at 
the same rate but with a delayed onset corresponding 
to the time from infection to death. Fitting a simple 
exponential growth model to the number of reported 
deaths in Hubei during late January 2020 yields an 
estimate of 0.22–0.27/day, which is within the 95% CI 
of the estimation we previously described.

Overall, these analyses suggest that although 
there exist uncertainties depending on the level of 
surveillance, the exponential growth rate of the out-
break is probably 0.21–0.3/day. This estimation is 
much higher than previous reports, in which the 
growth rate was estimated to be 0.1–0.14/day (1,3–5).
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Figure 3. Estimates of the 
exponential growth rate and the date 
of exponential growth initiation of 
the coronavirus disease outbreak 
in China based on 2 different 
approaches. A) Schematic illustrating 
the export of infected persons 
from Wuhan. Travelers (dots) are 
assumed to be random samples 
from the total population (whole pie). 
Because of the growth of the infected 
population (orange pie) and the 
shrinking size of the total population 
in Wuhan over time, probability of 
infected persons traveling to other 
provinces increases (orange dots). 
B) The dates of documented first 
arrivals of infected persons in 26 
provinces. C) Best fit of the case 
count model to daily counts of new 
cases (including only imported 
cases) in provinces other than Hubei. 
Error bars indicate SDs. 
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Estimating R0
The basic reproductive number, R0, is dependent on 
the exponential growth rate of an outbreak, as well as 
additional factors such as the latent period (the time 
from infection to infectiousness) and the infectious 
period (16,17), both of which cannot be estimated 
directly from the data. Following the approach by 
Wearing and Rohani (16), we found that with a high 
growth rate of the outbreak, R0 is in general high and 
the longer the latent and the infectious periods, the 
higher the estimated R0 (Appendix 2 Figure 6).

To derive realistic values of R0, we used previous 
estimates of serial intervals for COVID-19. The serial 
interval is estimated to be ≈7–8 days based on data 
collected early in the outbreak in Wuhan (1). More re-
cent data collected in Shenzhen Province, China, sug-
gests that the serial interval is dependent on the time 
to hospital isolation (Q. Bi et al., unpub. data, https://
doi.org/10.1101/2020.03.03.20028423). When infect-
ed persons are isolated after 5 days of symptoms (a 
probable scenario for the early outbreak in Wuhan, 
where the public was not aware of the virus and few 
interventions were implemented), the serial interval 
is estimated to be 8 days (Q. Bi et al., unpub. data). 
Thus, these results suggest a serial interval of 7–8 
days. With this serial interval, we sampled latent and 
infectious periods within wide biologically plausible 
ranges (Appendix 2) and estimated the median R0 to 
be 5.8 (95% CI 4.4–7.7) (Figure 5, panel A). To include 
a wider range of serial interval (i.e., 6–9 days) (Figure 
5, panel A; Appendix 2 Figure 6), given the uncertain-
ties in these estimations, we estimated that the me-
dian of estimated R0 is 5.7 (95% CI of 3.8–8.9) (Figure 
5, panel B). The estimated R0 can be lower if the serial 
interval is shorter. However, recent studies reported 
that persons can be infectious for a long period, such 
as 1–3 weeks after symptom onset (18; R. Woelfel  

et al., unpub data. https://doi.org/10.1101/2020.03.
05.20030502); thus, we believe that a mean serial in-
terval shorter than 6 days is unlikely during the early 
outbreak in Wuhan, where infected persons were not 
rapidly hospitalized.

Implications for Intervention Strategies
The R0 values we estimated have important implica-
tions for predicting the effects of pharmaceutical and 
nonpharmaceutical interventions. For example, the 
threshold for combined vaccine efficacy and herd im-
munity needed for disease extinction is calculated as 
1 – 1/R0. At R0 = 2.2, this threshold is only 55%. But at 
R0 = 5.7, this threshold rises to 82% (i.e., >82% of the 
population has to be immune, through either vaccina-
tion or prior infection, to achieve herd immunity to 
stop transmission).
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Figure 4. Marginalized likelihoods of growth rate (r) for 2 inference 
approaches to estimates the exponential growth rate of the 
coronavirus disease outbreak in China. 

Figure 5. Estimation of the 
basic reproductive number 
(R0), derived by integrating 
uncertainties in parameter 
values, during the coronavirus 
disease outbreak in China. 
A) Changes in R0 based on 
different growth rates and 
serial intervals. Each dot 
represents a calculation with 
mean latent period (range 
2.2–6 days) and mean 
infectious periods (range 4–14 
days). Only those estimates 
falling within the range of 
serial intervals of interests 
were plotted. B) Histogram summarizing the estimated R0 of all dots in panel A (i.e., serial interval ranges of 6–9 days). The 
median R0 is 5.7 (95% CI 3.8–8.9).
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We then evaluated the effectiveness for nonphar-
maceutical interventions, such as contact tracing, quar-
antine, and social distancing, by using the framework 
by Lipsitch et al. (19) (Appendix 2). We extended the 
framework to consider a fraction of transmission occur-
ring from infected persons who would not be identified 
by surveillance and can transmit effectively (15). This 
fraction is determined by the fraction of actual asymp-
tomatic persons and the extent of surveillance efforts to 
identify these persons and persons with mild-to-moder-
ate symptoms. Results show that quarantine and contact 
tracing of symptomatic persons can be effective when 
the fraction of unidentified persons is low. However, 
when 20% of transmission is driven by unidentified 
infected persons, high levels of social distancing efforts 
will be needed to contain the virus (Figure 6), highlight-
ing the importance of early and effective surveillance, 
contact tracing, and quarantine. Future field, laboratory, 
and modeling studies aimed to address the unknowns, 
such as the fraction of asymptomatic persons, the extent 
of their transmissibility depending on symptom sever-
ity, the time when persons become infectious, and the 
existence of superspreaders are needed to accurately 
predict the impact of various control strategies (20).

Discussion
In this study, we estimated several basic epidemio-
logic parameters, including the incubation period (4.2 

days), a time dependent duration from symptom on-
set to hospitalization (changing from 5.5 days in early 
January to 1.5 days in late January outside Hubei 
Province), and the time from symptom onset to death 
(16.1 days). By using 2 distinct approaches, we esti-
mated the growth rate of the early outbreak in Wu-
han to be 0.21–0.30 per day (a doubling time of 2.3–3.3 
days), suggesting a much faster rate of spread than 
initially measured. This finding would have impor-
tant implications for forecasting epidemic trajectories 
and the effect on healthcare systems as well as for 
evaluating the effectiveness of intervention strategies.

We found R0 is likely to be 5.7 given our current 
state of knowledge, with a broad 95% CI (3.8–8.9). 
Among many factors, the lack of awareness of this 
new pathogen and the Lunar New Year travel and 
gathering in early and mid-January 2020 might or 
might not play a role in the high R0. A recent study 
based on structural analysis of the virus particles sug-
gests SARS-CoV-2 has a much higher affinity to the 
receptor needed for cell entry than the 2003 SARS 
virus (21), providing a molecular basis for the high 
infectiousness of SARS-CoV-2.

How contagious SARS-CoV-2 is in other coun-
tries remains to be seen. Given the rapid rate of 
spread as seen in current outbreaks in Europe, we 
need to be aware of the difficulty of controlling SARS-
CoV-2 once it establishes sustained human-to-human 
transmission in a new population (20). Our results 
suggest that a combination of control measures, in-
cluding early and active surveillance, quarantine, and 
especially strong social distancing efforts, are needed 
to slow down or stop the spread of the virus. If these 
measures are not implemented early and strongly, 
the virus has the potential to spread rapidly and in-
fect a large fraction of the population, overwhelming 
healthcare systems. Fortunately, the decline in newly 
confirmed cases in China and South Korea in March 
2020 and the stably low incidences in Taiwan, Hong 
Kong, and Singapore strongly suggest that the spread 
of the virus can be contained with early and appropri-
ate measures.
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Figure 6. Levels of minimum efforts of intervention strategies 
needed to control the spread of severe acute respiratory syndrome 
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contact rates (y-axis). Percentages denote the percentages of 
transmissions driven by infected persons that were not detected by 
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illness or low surveillance intensity. 
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