Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 1—January 2021

Detection of Norovirus Variant GII.4 Hong Kong in Asia and Europe, 2017−2019

Martin Chi-Wai Chan1, Sunando Roy, Joseph Bonifacio, Lin-Yao Zhang, Preeti Chhabra, Jenny C.M. Chan, Cristina Celma, Mary Ann Igoy, Sin-Leung Lau, Kirran N. Mohammad, Jan Vinjé, Harry Vennema, Judith Breuer, Marion Koopmans, Miranda de GraafComments to Author , and for NOROPATROL2
Author affiliations: The Chinese University of Hong Kong, Hong Kong, China (M.C.-W. Chan, L.-Y. Zhang, J.C.M. Chan, S.-L. Lau, K.N. Mohammad); University College London, London, UK (S. Roy, J. Breuer); Research Institute for Tropical Medicine, Muntinlupa City, the Philippines (J. Bonifacio, M.A. Igoy); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (P. Chhabra, J. Vinjé); Public Health England, London (C. Celma); National Institute for Public Health and the Environment, Bilthoven, the Netherlands (H. Vennema); Erasmus Medical Center, Rotterdam, the Netherlands (M. Koopmans, M. de Graaf)

Main Article

Table 2

Amino acids on the major capsid protein at 5 positions proposed to be influential in the emergence and replacement of pandemic norovirus GII.4 variants since 1995*

GII.4 variant Amino acid position
352 355 357 368 378
Hong Kong S A D G G
Osaka L S D A G
Sydney 2012 Y S D E N
New Orleans 2009 Y S D A N
Den Haag 2006 Y S P S H
Hunter 2004 S S H S G
Farmington Hills 2002 S D H N G
US 1995–96 S S H T G

*GII.4 variants with pandemic spread are annotated with the year of predominance (e.g., Sydney 2012). Amino acids are shown by 1-letter codes and color-coded to show variations. Source: (7).

Main Article

  1. Chhabra  P, de Graaf  M, Parra  GI, Chan  MC, Green  K, Martella  V, et al. Updated classification of norovirus genogroups and genotypes. J Gen Virol. 2019;100:1393406. DOIPubMedGoogle Scholar
  2. Havelaar  AH, Kirk  MD, Torgerson  PR, Gibb  HJ, Hald  T, Lake  RJ, et al.; World Health Organization Foodborne Disease Burden Epidemiology Reference Group. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12:e1001923. DOIPubMedGoogle Scholar
  3. Ahmed  SM, Hall  AJ, Robinson  AE, Verhoef  L, Premkumar  P, Parashar  UD, et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:72530. DOIPubMedGoogle Scholar
  4. Kowalzik  F, Riera-Montes  M, Verstraeten  T, Zepp  F. The burden of norovirus disease in children in the European Union. Pediatr Infect Dis J. 2015;34:22934. DOIPubMedGoogle Scholar
  5. Zhou  H, Wang  S, von Seidlein  L, Wang  X. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes. Front Med. 2020;14:17. DOIPubMedGoogle Scholar
  6. Trivedi  TK, Desai  R, Hall  AJ, Patel  M, Parashar  UD, Lopman  BA. Clinical characteristics of norovirus-associated deaths: a systematic literature review. Am J Infect Control. 2013;41:6547. DOIPubMedGoogle Scholar
  7. Tohma  K, Lepore  CJ, Gao  Y, Ford-Siltz  LA, Parra  GI. Population genomics of GII.4 noroviruses reveal complex diversification and new antigenic sites involved in the emergence of pandemic strains. MBio. 2019;10:e0220219. DOIPubMedGoogle Scholar
  8. Cates  JE, Vinjé  J, Parashar  U, Hall  AJ. Recent advances in human norovirus research and implications for candidate vaccines. Expert Rev Vaccines. 2020;19:53948. DOIPubMedGoogle Scholar
  9. van Beek  J, de Graaf  M, Al-Hello  H, Allen  DJ, Ambert-Balay  K, Botteldoorn  N, et al.; NoroNet. Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infect Dis. 2018;18:54553. DOIPubMedGoogle Scholar
  10. Cannon  JL, Barclay  L, Collins  NR, Wikswo  ME, Castro  CJ, Magaña  LC, et al. Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J Clin Microbiol. 2017;55:220821. DOIPubMedGoogle Scholar
  11. Jin  M, Wu  S, Kong  X, Xie  H, Fu  J, He  Y, et al. Norovirus outbreak surveillance, China, 2016–2018. Emerg Infect Dis. 2020;26:43745. DOIPubMedGoogle Scholar
  12. Tse  EHY, Zhang  LY, Lau  SL, Chan  MC. Genome sequence of a human norovirus GII.4 Hong Kong[P31] variant in Hong Kong, China. Microbiol Resour Announc. 2020;9:e0139119. DOIPubMedGoogle Scholar
  13. Allen  DJ, Trainor  E, Callaghan  A, O’Brien  SJ, Cunliffe  NA, Iturriza-Gómara  M. Early detection of epidemic GII-4 norovirus strains in UK and Malawi: role of surveillance of sporadic acute gastroenteritis in anticipating global epidemics. PLoS One. 2016;11:e0146972. DOIPubMedGoogle Scholar
  14. Ruis  C, Lindesmith  LC, Mallory  ML, Brewer-Jensen  PD, Bryant  JM, Costantini  V, et al. Preadaptation of pandemic GII.4 noroviruses in unsampled virus reservoirs years before emergence. Virus Evol. 2020;6:veaa067; Epub ahead of print. DOIGoogle Scholar
  15. Parra  GI. Emergence of norovirus strains: A tale of two genes. Virus Evol. 2019;5:vez048. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Research Office, Food and Health Bureau, Hong Kong, China.

2Members who contributed data are listed at the end of this article.

Page created: November 19, 2020
Page updated: December 21, 2020
Page reviewed: December 21, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.