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Appendix 

Full Description of the Mechanistic Compartmental Model 

The compartmental model (Appendix Figure 1), consists of the following 25 ordinary 

differential equations (ODEs): 
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𝑑𝑑𝐸𝐸2,𝑄𝑄

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑄𝑄(𝐸𝐸2,𝑀𝑀 + 𝐸𝐸2,𝑃𝑃) − 𝑘𝑘𝐿𝐿𝐸𝐸2,𝑄𝑄 

[7] 

𝑑𝑑𝐸𝐸𝑖𝑖,𝑄𝑄
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑄𝑄�𝐸𝐸𝑖𝑖,𝑀𝑀 + 𝐸𝐸𝑖𝑖,𝑃𝑃� + 𝑘𝑘𝐿𝐿𝐸𝐸𝑖𝑖−1,𝑄𝑄  − 𝑘𝑘𝐿𝐿𝐸𝐸𝑖𝑖,𝑄𝑄, for 𝑖𝑖 = 3, 4, 5 [8] 

𝑑𝑑𝐴𝐴𝑀𝑀
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝐴𝐴𝑘𝑘𝐿𝐿𝐸𝐸5,𝑀𝑀 − 𝑘𝑘𝑄𝑄𝐴𝐴𝑀𝑀 − 𝑈𝑈𝜎𝜎(𝑡𝑡)Λ𝜏𝜏(𝑡𝑡)[𝑃𝑃𝜏𝜏(𝑡𝑡)𝐴𝐴𝑀𝑀 − (1 − 𝑃𝑃𝜏𝜏(𝑡𝑡))𝐴𝐴𝑃𝑃] − 𝑐𝑐𝐴𝐴𝐴𝐴𝑀𝑀 
[9] 

𝑑𝑑𝐴𝐴𝑃𝑃
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝐴𝐴𝑘𝑘𝐿𝐿𝐸𝐸5,𝑃𝑃 − 𝑘𝑘𝑄𝑄𝐴𝐴𝑃𝑃 + 𝑈𝑈𝜎𝜎(𝑡𝑡)Λ𝜏𝜏(𝑡𝑡)[𝑃𝑃𝜏𝜏(𝑡𝑡)𝐴𝐴𝑀𝑀 − (1 − 𝑃𝑃𝜏𝜏(𝑡𝑡))𝐴𝐴𝑃𝑃] − 𝑐𝑐𝐴𝐴𝐴𝐴𝑃𝑃 
[10] 

𝑑𝑑𝐴𝐴𝑄𝑄
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝐴𝐴𝑘𝑘𝐿𝐿𝐸𝐸5,𝑄𝑄 + 𝑘𝑘𝑄𝑄(𝐴𝐴𝑀𝑀 + 𝐴𝐴𝑃𝑃) − 𝑐𝑐𝐴𝐴𝐴𝐴𝑄𝑄 
[11] 

𝑑𝑑𝐼𝐼𝑀𝑀
𝑑𝑑𝑑𝑑

= (1 − 𝑓𝑓𝐴𝐴)𝑘𝑘𝐿𝐿𝐸𝐸5,𝑀𝑀 − �𝑘𝑘𝑄𝑄 + 𝑗𝑗𝑄𝑄�𝐼𝐼𝑀𝑀 − 𝑈𝑈𝜎𝜎(𝑡𝑡)Λ𝜏𝜏(𝑡𝑡)�𝑃𝑃𝜏𝜏(𝑡𝑡)𝐼𝐼𝑀𝑀 − �1 − 𝑃𝑃𝜏𝜏(𝑡𝑡)�𝐼𝐼𝑃𝑃�

− 𝑐𝑐𝐼𝐼𝐼𝐼𝑀𝑀 

[12] 

𝑑𝑑𝐼𝐼𝑃𝑃
𝑑𝑑𝑑𝑑

= (1 − 𝑓𝑓𝐴𝐴)𝑘𝑘𝐿𝐿𝐸𝐸5,𝑃𝑃 − �𝑘𝑘𝑄𝑄 + 𝑗𝑗𝑄𝑄�𝐼𝐼𝑃𝑃 + 𝑈𝑈𝜎𝜎(𝑡𝑡)Λ𝜏𝜏(𝑡𝑡)[𝑃𝑃𝜏𝜏(𝑡𝑡)𝐼𝐼𝑀𝑀 − �1 − 𝑃𝑃𝜏𝜏(𝑡𝑡)�𝐼𝐼𝑃𝑃] − 𝑐𝑐𝐼𝐼𝐼𝐼𝑃𝑃 
[13] 

𝑑𝑑𝐼𝐼𝑄𝑄
𝑑𝑑𝑑𝑑

= (1 − 𝑓𝑓𝐴𝐴)𝑘𝑘𝐿𝐿𝐸𝐸5,𝑄𝑄 + �𝑘𝑘𝑄𝑄 + 𝑗𝑗𝑄𝑄�(𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑃𝑃) − 𝑐𝑐𝐼𝐼𝐼𝐼𝑄𝑄 
[14] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑓𝑓𝐻𝐻𝑐𝑐𝐼𝐼�𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑃𝑃 + 𝐼𝐼𝑄𝑄� − 𝑐𝑐𝐻𝐻𝐻𝐻 
[15] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝑓𝑓𝑅𝑅)𝑐𝑐𝐻𝐻𝐻𝐻 
[16] 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐𝐴𝐴�𝐴𝐴𝑀𝑀 + 𝐴𝐴𝑃𝑃 + 𝐴𝐴𝑄𝑄� + (1 − 𝑓𝑓𝐻𝐻)𝑐𝑐𝐼𝐼�𝐼𝐼𝑀𝑀 + 𝐼𝐼𝑃𝑃 + 𝐼𝐼𝑄𝑄� + 𝑓𝑓𝑅𝑅𝑐𝑐𝐻𝐻𝐻𝐻 
[17] 

where 𝛽𝛽, 𝑆𝑆0, 𝑚𝑚𝑏𝑏, 𝑘𝑘𝐿𝐿, 𝑘𝑘𝑄𝑄, 𝑗𝑗𝑄𝑄, 𝑓𝑓𝐴𝐴, 𝑓𝑓𝐻𝐻, 𝑓𝑓𝑅𝑅, 𝑐𝑐𝐴𝐴, 𝑐𝑐𝐼𝐼, and 𝑐𝑐𝐻𝐻 are positive-valued time-invariant 

parameters (Tables 1, 3). Parameter names are unique but only within the namespace of a given 

model. Each ODE in equations 1–17 defines the time-rate of change of a subpopulation (i.e., the 

time-rate of change of a state variable). There are 25 state variables, 1 for each ODE. Equation 5 

defines 4 ODEs, 6 defines 4, and 8 defines 3 ODEs of the model. The model does not include 

new cases caused by travel. 

The initial condition is 𝑆𝑆𝑀𝑀(𝑡𝑡0) = 𝑆𝑆0, 𝐼𝐼𝑀𝑀(𝑡𝑡0) = 𝐼𝐼0 = 1, with all other populations (𝑆𝑆𝑃𝑃, 

𝐸𝐸1,𝑀𝑀, … ,𝐸𝐸5,𝑀𝑀, 𝐸𝐸1,𝑃𝑃, … ,𝐸𝐸5,𝑃𝑃, 𝐸𝐸2,𝑄𝑄, … ,𝐸𝐸5,𝑄𝑄, 𝐴𝐴𝑀𝑀, 𝐴𝐴𝑃𝑃, 𝐴𝐴𝑄𝑄, 𝐼𝐼𝑃𝑃, 𝐼𝐼𝑄𝑄,𝐻𝐻, 𝐷𝐷, and 𝑅𝑅) equal to 0. The 
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parameter 𝑆𝑆0 denotes the total region-specific population size. Thus, we assume that the entire 

population is susceptible at the start of the epidemic at time 𝑡𝑡 = 𝑡𝑡0>0, where time 𝑡𝑡 = 0 is 00:00 

hours on January 21, 2020. The parameter 𝐼𝐼0, which we always consider to be 1, denotes the 

number of infectious symptomatic persons at the start of the regional epidemic. 

Subscripts attached to state variables are used to denote subpopulations. The subscript 𝑀𝑀  

represents mixing populations and 𝑃𝑃 represents protected populations. For example, the variables 

𝑆𝑆𝑀𝑀 and 𝑆𝑆𝑃𝑃 denote the population sizes of mixing and protected persons who are susceptible to 

infection. Persons in a protected population practice social distancing; persons in a mixing 

population do not. The approach that we have taken to model social distancing is similar to that 

of Anderson et al. (S. Anderson, unpub. data, 

https://www.medrxiv.org/content/10.1101/2020.04.17.20070086v1). 

The incubation period is divided into 5 stages. The numerical subscripts 1, 2, 3, 4, and 5 

attached to 𝐸𝐸 variables indicate progression through these 5 stages. Exposed persons in the 

incubation period, except for those in the first stage, are considered to be infectious but without 

symptoms. They are either presymptomatic (i.e., will later have symptoms) or asymptomatic 

(i.e., will never have symptoms). 

The subscript 𝑄𝑄 is attached to variables representing populations of quarantined persons. 

The state variable 𝐼𝐼𝑄𝑄 is a special case; it accounts for symptomatic persons who are quarantined 

as well as persons who are self-isolating because of symptom awareness. 

The parameter 𝑘𝑘𝑄𝑄 characterizes the rate at which infected persons move into quarantine 

because of testing and contact tracing. The parameter 𝑗𝑗𝑄𝑄 characterizes the rate at which 

symptomatic persons self-isolate because of symptom awareness. We recognize that susceptible 

persons may enter quarantine (through contact tracing) but we assume that the size of the 

quarantined population is negligible compared to that of the total susceptible population and that 

susceptible persons entering quarantine leave quarantine as susceptible persons. 

The parameters 𝛽𝛽 and 𝑚𝑚𝑏𝑏 < 1 characterize transmission of disease: 𝛽𝛽 characterizes the 

rate of transmission attributable to contacts between 2 mixing persons, 𝑚𝑚𝑏𝑏𝛽𝛽 characterizes the 

rate of transmission attributable to contacts between 1 mixing and 1 protected person, and 𝑚𝑚𝑏𝑏
2𝛽𝛽 

characterizes the rate of transmission attributable to contacts between 2 protected persons. 
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Infectious persons considered to contribute to coronavirus disease (COVID-19) transmission 

include those in the following pools: 𝐸𝐸2,𝑀𝑀, … ,𝐸𝐸5,𝑀𝑀 and 𝐸𝐸2,𝑃𝑃, … ,𝐸𝐸5,𝑃𝑃, 𝐴𝐴𝑀𝑀 and 𝐴𝐴𝑃𝑃, and 𝐼𝐼𝑀𝑀 and 𝐼𝐼𝑃𝑃. 

We do not consider persons in the first stage of the incubation period (i.e., persons in 𝐸𝐸1 pools) 

to be infectious because we assume these persons are not shedding enough virus to be infectious 

or detectable in surveillance testing. In experiments with an animal model (the golden hamster, 

Mesocricetus auratus), infectious virus could be recovered from animals 2 days post-inoculation 

(2). Moreover, it was found that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

could be detected in contacts of infected animals just 1 day post-contact (2). Kucirka et al. (3) 

estimated that the false negative rate for nasal samples from exposed persons tested for SARS-

CoV-2 infection an estimated 1 day after exposure is 100% but <100% thereafter. Thus, it seems 

reasonable to assume that exposed persons beyond the first incubation stage, which has a 

duration of ≈1 day (on the basis of our estimate for 𝑘𝑘𝐿𝐿, which is discussed below), are infectious 

and may be detected as such. 

The variables 𝐸𝐸1,𝑀𝑀, … ,𝐸𝐸5,𝑀𝑀 and 𝐸𝐸1,𝑃𝑃 , … ,𝐸𝐸5,𝑃𝑃 denote the population sizes of mixing and 

protected exposed persons in the 5 stages of the incubation period. The variables 𝐸𝐸2,𝑄𝑄, … ,𝐸𝐸5,𝑄𝑄 

denote the population sizes of quarantined exposed persons in the 5 stages. There is no 𝐸𝐸1,𝑄𝑄 

population, as we assume that persons in the first stage of the incubation period are unlikely to 

test positive for SARS-CoV-2 or to be reached in contact tracing efforts before leaving the 𝐸𝐸1 

state. The parameter 𝑘𝑘𝐿𝐿 characterizes disease progression, from 1 stage of the incubation period 

to the next and ultimately to an immune clearance phase. Persons leaving the 𝐸𝐸5 pools enter the 

immune clearance phase, meaning that they become eligible for recovery. Any person leaving an 

𝐸𝐸5 pool with symptom onset enters an I pool, whereas an person leaving an 𝐸𝐸5 pool without 

symptom onset enters an A pool. Persons in 𝐼𝐼 pools are considered to have mild disease with the 

possibility to progress to severe disease. 

The dynamics of social distancing are characterized by 3 step functions (i.e., piecewise 

constant functions having only finitely many pieces): 𝑈𝑈𝜎𝜎, Λ𝜏𝜏, and 𝑃𝑃𝜏𝜏. The subscripts attached to 

these functions denote times: 𝜎𝜎 is a particular time, whereas 𝜏𝜏 is a set of times, as discussed later. 

The value of 𝑈𝑈𝜎𝜎 switches from 0 to 1 at time 𝑡𝑡 = 𝜎𝜎 > 𝑡𝑡0, the start of an initial social distancing 

period. As discussed later, the function Λτ defines a timescale for change in social distancing 

practices for one or more distinct periods of social distancing, and the function 𝑃𝑃𝜏𝜏 establishes a 
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setpoint for the fraction of the total population of susceptible and infectious persons adhering to 

social distancing practices for >1 distinct periods of social distancing. This population of persons 

adhering to social distancing practices excludes those persons who are quarantined, self-isolated, 

and hospitalized. 

The parameter 𝑓𝑓𝐴𝐴 denotes the fraction of infected persons who remain asymptomatic. The 

variables 𝐴𝐴𝑀𝑀 and 𝐴𝐴𝑃𝑃 denote the sizes of the populations of mixing and protected persons who 

have been infected, progressed through the incubation period, are currently in the immune 

clearance phase, and will never develop symptoms. The parameter 𝑐𝑐𝐴𝐴 characterizes the rate at 

which asymptomatic persons recover. Note that the duration of the immune clearance phase for 

asymptomatic persons, 𝑡̂𝑡𝐴𝐴, is distributed according to 𝑒𝑒−𝑐𝑐𝐴𝐴𝑡̂𝑡𝐴𝐴 and the mean value of 𝑡̂𝑡𝐴𝐴 is 1/𝑐𝑐𝐴𝐴. 

The variable 𝑅𝑅 tracks recoveries of asymptomatic persons, symptomatic persons with 

mild disease, and hospitalized symptomatic persons with severe disease. All persons who recover 

are assumed to have immunity, an assumption that is supported by the finding that SARS-CoV-2 

infection elicits functional T-cell memory (4). Moreover, neutralizing antibodies evidently 

protect against SARS-CoV-2 infection (5). Reinfection has been detected (6) but the implications 

of this apparently rare phenomenon have yet to be determined. 

The variables 𝐼𝐼𝑀𝑀 and 𝐼𝐼𝑃𝑃 denote the sizes of the populations of mixing and protected 

symptomatic persons with mild disease. The parameter 𝑐𝑐𝐼𝐼 characterizes the rate at which 

symptomatic persons with mild disease recover or progress to severe disease. The parameter 𝑓𝑓𝐻𝐻 

is the fraction of symptomatic persons who progress to severe disease requiring hospitalization. 

As a simplification, we assume that all persons with severe disease are hospitalized or isolated at 

home in an equivalent state. The duration of the immune clearance phase for symptomatic 

persons who never progress to severe disease, 𝑡̂𝑡𝐼𝐼, is distributed according to 𝑒𝑒−𝑐𝑐𝐼𝐼𝑡̂𝑡𝐼𝐼. The mean 

value of 𝑡̂𝑡𝐼𝐼 is 1/𝑐𝑐𝐼𝐼. As is implicit in our definition of 𝑐𝑐𝐼𝐼, the time required for progression from 

mild to severe disease is considered the same as the recovery time of symptomatic persons who 

experience only mild disease. 

The variable 𝐻𝐻 represents the population of hospitalized or severely ill persons. In the 

model, these persons are considered to be quarantined. Thus, the model does not consider 

nosocomial transmission. The parameter 𝑓𝑓𝑅𝑅 denotes the fraction of hospitalized severely ill 

persons who recover. The parameter 𝑐𝑐𝐻𝐻 characterizes the hospital discharge rate, i.e., the rate at 
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which hospitalized persons with severe disease either recover or die. The variable 𝐷𝐷 tracks 

deaths. Many deaths occur outside a hospital setting (I. Papst, unpub. data, 

https://www.medrxiv.org/content/10.1101/2020.09.01.20186395v2). As a simplification, the 

model does not distinguish between deaths at home and deaths in a hospital. Of note, the mean 

duration of the immune clearance phase for hospitalized or severely ill persons who recover, 𝑡̂𝑡𝐻𝐻, 

is distributed according to �𝑒𝑒−𝑐𝑐𝐼𝐼𝑡̂𝑡𝐻𝐻 − 𝑒𝑒−𝑐𝑐𝐻𝐻𝑡̂𝑡𝐻𝐻�𝑐𝑐𝐼𝐼𝑐𝑐𝐻𝐻/(𝑐𝑐𝐻𝐻 − 𝑐𝑐𝐼𝐼), assuming 𝑐𝑐𝐻𝐻 > 𝑐𝑐𝐼𝐼. The mean value 

of 𝑡̂𝑡𝐻𝐻 is 1/𝑐𝑐𝐼𝐼 + 1/𝑐𝑐𝐻𝐻. As is implicit in our definition of 𝑐𝑐𝐻𝐻, the time required for progression 

from severe disease to death is considered to be the same as the recovery time of hospitalized or 

severely ill persons. 

The time-dependent terms 𝜙𝜙𝑀𝑀(𝑡𝑡,𝜌𝜌) and 𝜙𝜙𝑃𝑃(𝑡𝑡,𝜌𝜌) appearing in equations 1–4 represent 

the effective population sizes of infectious persons in the mixing and protected subpopulations, 

respectively. These quantities are defined as follows: 

𝜙𝜙𝑀𝑀(𝑡𝑡, 𝜌𝜌) ≡ 𝐼𝐼𝑀𝑀 + 𝜌𝜌𝐸𝐸�𝐸𝐸2,𝑀𝑀 + 𝐸𝐸3,𝑀𝑀 + 𝐸𝐸4,𝑀𝑀 + 𝐸𝐸5,𝑀𝑀� + 𝜌𝜌𝐴𝐴𝐴𝐴𝑀𝑀 [18] 

𝜙𝜙𝑃𝑃(𝑡𝑡, 𝜌𝜌) ≡ 𝐼𝐼𝑃𝑃 + 𝜌𝜌𝐸𝐸�𝐸𝐸2,𝑃𝑃 + 𝐸𝐸3,𝑃𝑃 + 𝐸𝐸4,𝑃𝑃 + 𝐸𝐸5,𝑃𝑃� + 𝜌𝜌𝐴𝐴𝐴𝐴𝑃𝑃 [19] 

where 𝜌𝜌 = (𝜌𝜌𝐸𝐸 ,𝜌𝜌𝐴𝐴), 𝜌𝜌𝐸𝐸 is a constant characterizing the relative infectiousness of presymptomatic 

persons compared to symptomatic persons (with the same behaviors) and 𝜌𝜌𝐴𝐴 is a constant 

characterizing the relative infectiousness of asymptomatic persons compared to symptomatic 

persons (with the same behaviors). Recall that infectiousness due to social distancing behaviors 

is captured in equations 1 and 2. Further recall that we assume that persons in the first stage of 

the incubation period (i.e., persons in either the 𝐸𝐸1,𝑀𝑀 or 𝐸𝐸1,𝑃𝑃 population) are not infectious. We 

also assume that the persons in these populations cannot be quarantined until after transitioning 

to the 𝐸𝐸2,𝑀𝑀 or 𝐸𝐸2,𝑃𝑃 population because they are assumed to test negative and because contact 

tracing is assumed to be too slow to catch persons in the transient first stage of incubation. Recall 

that persons in the 𝐴𝐴𝑀𝑀, 𝐴𝐴𝑃𝑃, and 𝐴𝐴𝑄𝑄 populations are defined as persons who became infected, 

passed through all 5 stages of the incubation period, are currently in the immune clearance phase, 

and will never have symptoms. Thus, persons in the exposed 𝐸𝐸 populations include both 

presymptomatic persons (i.e., persons who will enter the 𝐼𝐼 populations) and asymptomatic 

persons (i.e., persons who will enter the 𝐴𝐴 populations). 
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The time-dependent terms 𝑈𝑈𝜎𝜎(t), 𝑃𝑃𝜏𝜏(𝑡𝑡), and Λ𝜏𝜏(𝑡𝑡) appearing in equations 1–6, equations 

9 and 10, and equations 12 and 13 are step functions defined as follows: 

𝑈𝑈𝜎𝜎(𝑡𝑡) = � 0 𝑡𝑡 < 𝜎𝜎
1 𝑡𝑡 ≥ 𝜎𝜎  [20] 

𝑃𝑃𝜏𝜏(𝑡𝑡) = �

𝑝𝑝0 𝜎𝜎 ≤ 𝑡𝑡 < 𝜏𝜏1
𝑝𝑝1 𝜏𝜏1 ≤ 𝑡𝑡 < 𝜏𝜏2
⋮ ⋮
𝑝𝑝𝑛𝑛 𝜏𝜏𝑛𝑛 ≤ 𝑡𝑡 < ∞

 

[21] 

Λ𝜏𝜏(𝑡𝑡) = �

𝜆𝜆0 𝜎𝜎 ≤ 𝑡𝑡 < 𝜏𝜏1
𝜆𝜆1 𝜏𝜏1 ≤ 𝑡𝑡 < 𝜏𝜏2
⋮ ⋮
𝜆𝜆𝑛𝑛 𝜏𝜏𝑛𝑛 ≤ 𝑡𝑡 < ∞

 

[22] 

where 𝜎𝜎 > 𝑡𝑡0 is the time at which widespread social distancing initially begins, the integer 𝑛𝑛 ≥ 0 

is the number of societal (major or widespread) shifts in social-distancing practices after the 

initial onset of social distancing, each 𝑝𝑝𝑖𝑖 < 1 is a parameter characterizing the quasistationary 

fraction of susceptible persons practicing social distancing during the (𝑖𝑖 + 1)th period of social 

distancing, each 𝜆𝜆𝑖𝑖 is a constant defining a timescale for change in social-distancing practices 

during the (𝑖𝑖 + 1)th period of social distancing, 𝜏𝜏 = {𝜏𝜏0, … , 𝜏𝜏𝑛𝑛+1}, 𝜏𝜏0 ≡ 𝜎𝜎, 𝜏𝜏𝑛𝑛+1 ≡ ∞, and 

𝜏𝜏𝑖𝑖+1 > 𝜏𝜏𝑖𝑖 for 𝑖𝑖 = 0, … ,𝑛𝑛 − 1. The value of 𝑃𝑃𝜏𝜏(𝑡𝑡) defines a setpoint for the quasistationary size of 

the protected population of susceptible persons, 𝑃𝑃𝜏𝜏(𝑡𝑡)  ×  100% of the total susceptible 

population. The value of Λ𝜏𝜏(𝑡𝑡) determines how quickly the setpoint is reached. As indicated in 

equations 21 and 22, we only consider step-changes in the values of 𝑃𝑃𝜏𝜏(𝑡𝑡) and Λ𝜏𝜏(𝑡𝑡), a 

simplification. Thus, for a period during which social-distancing practices are intensifying 

(relaxing), we increase (decrease) the value of 𝑃𝑃𝜏𝜏(𝑡𝑡) at the start of the period in a step-change 

and then hold it constant until the next step-change, if any. Note that 𝜎𝜎 is the start time of the 

initial social-distancing period. The time at which the initial social-distancing setpoint, 

determined by 𝑝𝑝0, is reached occurs later and is determined by 𝜆𝜆0, which should not to be 

confused with the setpoint parameters 𝑝𝑝0,𝑝𝑝1, … , 𝑝𝑝𝑛𝑛 with the distributional parameter 𝑝𝑝 in the 

negative binomial distribution NB(𝑟𝑟,𝑝𝑝). 
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Full Description of the Auxiliary Measurement Model 

To determine how consistent each parameterization of the compartmental model is with 

available COVID-19 surveillance data, we had to define a quantity—a model output—that 

corresponds to daily reports of the number of new confirmed COVID-19 cases. Case reporting 

by public health officials is typically daily. We expected that most cases were detected because 

of symptom driven (rather than random) testing, visits to a clinical setting, or both. Accordingly, 

as a simplification, we assumed that persons detected in surveillance are symptomatic. To define 

a model output comparable to the number of new cases reported on a given day, we started by 

considering the predicted cumulative number of presymptomatic persons who could become 

symptomatic while evading quarantine (because of contact tracing) until at least the onset of 

symptoms, which we will denoted as 𝐶𝐶𝑆𝑆. According to the model, the time rate of change of 𝐶𝐶𝑆𝑆 is 

given by the following equation: 

𝑑𝑑𝐶𝐶𝑆𝑆
𝑑𝑑𝑑𝑑

= (1 − 𝑓𝑓𝐴𝐴)𝑘𝑘𝐿𝐿(𝐸𝐸5,𝑀𝑀 + 𝐸𝐸5,𝑃𝑃) 
[23] 

The right-hand side of this equation gives the rate at which nonquarantined 

presymptomatic persons exit the incubation period and enter the immune clearance phase, in 

which they are symptomatic and therefore considered detectable in local surveillance efforts. We 

assumed that symptomatic persons in quarantine make a negligible contribution to detection of 

new cases. 

Equation 23 and the ODEs of the compartmental model form a coupled system of 

equations, which can be numerically integrated to obtain trajectories for the state variables and 

𝐶𝐶𝑆𝑆, the expected cumulative number of symptomatic cases. From the trajectory for 𝐶𝐶𝑆𝑆, we obtain 

a prediction for 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1), the expected number of new COVID-19 cases reported on a given 

calendar date 𝒟𝒟i, from the following equation: 

𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) = 𝑓𝑓𝐷𝐷[𝐶𝐶𝑆𝑆(𝑡𝑡𝑖𝑖+1) − 𝐶𝐶𝑆𝑆(𝑡𝑡𝑖𝑖)] [24] 

where 𝑓𝑓𝐷𝐷 is an adjustable region-specific parameter characterizing the time-averaged fraction of 

symptomatic cases detected among nonquarantined and hospitalized persons. Equation 24 

completes the formulation of our measurement model. 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) is the model output that we 

compare to 𝛿𝛿𝐶𝐶𝑖𝑖, the number of new cases reported on calendar date 𝒟𝒟i. 
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Adjustable and Fixed Parameters of the Compartmental and Auxiliary 
Measurement Models 

The parameters of the compartmental model (equations 1–22) and the auxiliary 

measurement model (equations 23 and 24) are considered to have either adjustable or fixed 

values. The adjustable parameter values were estimated (daily) through Bayesian inference on 

the basis of surveillance data (i.e., reports of newly detected cases). The fixed parameter values 

are held constant during inference and are based on nonsurveillance data, assumptions, or both, 

which are discussed in the section below. In this section, we simply delineate the parameters 

with adjustable and fixed values. The compartmental model formulated for a given regional 

epidemic has a total of 16 + 3(𝑛𝑛 + 1) parameters. The value of 𝑛𝑛 is structural; it sets the number 

social-distancing periods considered. 

The value of n corresponds to the number of periods of distinct social-distancing 

behaviors that follow an initial period of social distancing, which we take to begin at time 𝑡𝑡 =

𝜎𝜎 > 𝑡𝑡0. Here, we take 𝑛𝑛 = 0 or 1 for all regional epidemics of interest. Initially, we set 𝑛𝑛 = 0. In 

cases where we set 𝑛𝑛 = 1, this setting was motivated by second wave-type dynamics suggested 

by the surveillance data, which we take to indicate a relaxation of social distancing practices at 

time 𝑡𝑡 = 𝜏𝜏1 > 𝜎𝜎. The parameters of the initial social distancing period are 𝜎𝜎, 𝑝𝑝0, and 𝜆𝜆0. The 

parameters of the second social distancing period, if considered, are 𝜏𝜏1, 𝑝𝑝1, and 𝜆𝜆1. Thus, there 

are 3(𝑛𝑛 + 1) social-distancing parameters, all of which were adjustable. 

In addition to the 3(𝑛𝑛 + 1) social distancing parameters, we have 16 other parameters. Of 

these, 3 define the initial condition: 𝑡𝑡0, 𝑆𝑆𝑀𝑀(𝑡𝑡 = 𝑡𝑡0) = 𝑆𝑆0, and 𝐼𝐼𝑀𝑀(𝑡𝑡 = 𝑡𝑡0) = 𝐼𝐼0, where 𝑡𝑡0 is the 

time at which the epidemic begins, 𝑆𝑆0 is the total population of the region of interest, and 𝐼𝐼0, the 

initial number of infected persons, is always assumed to be 1. We take 𝑡𝑡0 to be adjustable and 𝑆𝑆0 

and 𝐼𝐼0 to be fixed. The value of 𝑆𝑆0 is set on the basis of population estimates by the US Census 

Bureau for the metropolitan statistical areas of interest (7), which are delineated by the US Office 

of Management and Budget (8). 

The final adjustable parameter of the compartmental model, 𝛽𝛽, characterizes the rate of 

disease transmission attributable to contacts among persons within the mixing population. In the 

period before the onset of social distancing, from 𝑡𝑡0 to 𝜎𝜎, when 𝑆𝑆𝑀𝑀/𝑆𝑆0 ≈1, the instantaneous rate 

of disease transmission is 𝛽𝛽𝜙𝜙𝑀𝑀(𝑡𝑡,𝜌𝜌), where 𝜙𝜙𝑀𝑀(𝑡𝑡,𝜌𝜌) is the effective number of infectious 
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persons at time 𝑡𝑡, a weighted sum of the numbers of symptomatic, presymptomatic, and 

asymptomatic persons determined by 𝜌𝜌 = (𝜌𝜌𝐸𝐸 ,𝜌𝜌𝐴𝐴). We assumed that exposed persons after the 

first stage of disease incubation are infectious, as are asymptomatic persons in the immune 

clearance phase who have passed through all 5 stages of disease incubation and who will never 

develop symptoms. 

The remaining 12 parameters of the compartmental model, which are considered to have 

fixed, region-independent values, are as follows: 𝑚𝑚𝑏𝑏, 𝜌𝜌𝐸𝐸, 𝜌𝜌𝐴𝐴, 𝑘𝑘𝐿𝐿, 𝑘𝑘𝑄𝑄, 𝑗𝑗𝑄𝑄, 𝑓𝑓𝐴𝐴, 𝑓𝑓𝐻𝐻, 𝑐𝑐𝐴𝐴, 𝑐𝑐𝐼𝐼, 𝑓𝑓𝑅𝑅, and 

𝑐𝑐𝐻𝐻 . Our estimates for these parameters are discussed in the section immediately below. Of note, 

settings for 𝑓𝑓𝑅𝑅 and 𝑐𝑐𝐻𝐻 do not affect predictions of new cases because these parameters 

characterize recovery or morbidity of hospitalized persons. The parameter 𝑓𝑓𝑅𝑅 is the fraction of 

hospitalized persons who recover, and the parameter 𝑐𝑐𝐻𝐻 characterizes the hospital discharge rate. 

Although nosocomial disease transmission is a significant concern, we assume that hospitalized 

persons are effectively quarantined such that the overall rate of disease transmission in a given 

region is insensitive to the number of hospitalized persons in that region. 

Estimates of 12 Fixed Parameter Values of the Compartmental Model 

We summarize the rationale for each of our estimates for the values of the following 12 

parameters of the compartmental model: 𝑚𝑚𝑏𝑏, 𝜌𝜌𝐸𝐸, 𝜌𝜌𝐴𝐴, 𝑘𝑘𝐿𝐿, 𝑘𝑘𝑄𝑄, 𝑗𝑗𝑄𝑄, 𝑓𝑓𝐴𝐴, 𝑓𝑓𝐻𝐻, 𝑐𝑐𝐴𝐴, 𝑐𝑐𝐼𝐼, 𝑓𝑓𝑅𝑅, and 𝑐𝑐𝐻𝐻 . The 

estimates are assumed to apply to all regions (i.e., we take these parameters to have region-

independent values). We provide rough provisional estimates below because we had limited 

input information for the estimates. Although using point estimates for some of the model 

parameters can lead to underestimates of parametric uncertainty (9), aggressively leveraging 

prior knowledge (namely, parameter point estimates) reduces the number of adjustable 

parameters, which is necessary because not all model parameters can be inferred from case 

reporting. For each region of interest, we focused on inferring model parameters to characterize 

when disease transmission started (𝑡𝑡0), how disease transmission depends on behavior (𝜎𝜎, 𝑝𝑝0, 𝜆𝜆0, 

and 𝛽𝛽), and surveillance (𝑓𝑓𝐷𝐷 and 𝑟𝑟). Given the data streams analyzed, the evident influence of 

behavior and social distancing on disease transmission, and our goal of situational awareness, 

focusing on inference of these parameters seems reasonable. As we discuss below, we fix the 

value of 𝑚𝑚𝑏𝑏, which characterizes social distancing, only because we found it correlated with the 

value of 𝑝𝑝0, another social distancing parameter, when both are inferred. 
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The parameter 𝑚𝑚𝑏𝑏 characterizes the effects of social distancing on disease transmission. 

Without social distancing, all contacts responsible for disease transmission are between mixing 

persons in the 𝐼𝐼𝑀𝑀 and 𝑆𝑆𝑀𝑀 pools and the rate of transmission is characterized by 𝛽𝛽. With social 

distancing, contacts can involve 1 person in a mixing population (𝐼𝐼𝑀𝑀 and 𝑆𝑆𝑀𝑀 pools) and 1 person 

in a protected population ( 𝑆𝑆𝑃𝑃 and 𝐼𝐼𝑃𝑃 pools); we characterized transmission rates associated by 

these contacts as 𝑚𝑚𝑏𝑏𝛽𝛽 in the model. Contacts also can involve 2 persons in protected populations 

(𝐼𝐼𝑃𝑃 and 𝑆𝑆𝑃𝑃 pools) and we characterize transmission associated with these types of contact by 

𝑚𝑚𝑏𝑏
2𝛽𝛽.In the model, the rates of transmission associated with these types of contacts are 

characterized by 𝑚𝑚𝑏𝑏𝛽𝛽 and 𝑚𝑚𝑏𝑏
2𝛽𝛽, respectively. We are confident that social distancing is 

protective (i.e., 𝑚𝑚𝑏𝑏 < 1) but little information is available to suggest the magnitude of the effect. 

We arbitrarily set 𝑚𝑚𝑏𝑏 = 0.1, which can be interpreted to mean that a susceptible person 

practicing social distancing has a 10-fold smaller chance of becoming infected than a susceptible 

person that is not practicing social distancing. In exploratory analyses, wherein we allowed 𝑚𝑚𝑏𝑏 

to be a free parameter, we found that its inferred value is positively correlated with the extent of 

social distancing, which is determined by the relevant social distancing setpoint parameter; for 

example, 𝑝𝑝0 during the initial social-distancing period. Thus, we interpret the inferred 

quasistationary value of 𝑆𝑆𝑃𝑃 to be an effective population size. If our estimate for 𝑚𝑚𝑏𝑏 is too high 

(i.e., we underestimate the protective effect of social distancing), the effective size will be larger 

than the true size. Conversely, if our estimate for 𝑚𝑚𝑏𝑏 is too low, the effective size will be smaller 

than the true size. 

The parameter 𝜌𝜌𝐸𝐸  characterizes the relative infectiousness of persons without symptoms 

during the incubation period; 𝜌𝜌𝐴𝐴 characterizes the infectiousness of those without symptoms in 

the immune clearance phase. Infectiousness is compared to that of a symptomatic person. Using 

a 1-step real-time reverse transcriptase PCR (rRT-PCR) assay to quantify viral RNA abundance 

in nasopharyngeal and oropharyngeal samples, Arons et al. (10) determined rRT-PCR cycle 

threshold (Ct) values for 17 symptomatic and 24 presymptomatic persons. Ct value is inversely 

proportional to abundance. In the study, Arons et al. noted symptomatic persons had typical 

symptoms and asymptomatic persons lacked symptoms at the time of testing but developed 

symptoms <1 week after testing. At the time of testing, the median Ct value was 24.8 for 

symptomatic persons and 23.1 for presymptomatic persons. On the basis of these results and an 
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assumption that infectiousness is proportional to viral load, we estimated that 𝜌𝜌𝐸𝐸 = 1.1. An 

estimate for 𝜌𝜌𝐸𝐸 >1 is consistent with the findings of He et al. (11), who inferred that viral load 

peaks 0.7 days before the onset of symptoms from an analysis of temporal viral load data and 

information available about infector–infectee transmission pairs. A review of the literature by A. 

Benefield (unpub. data, https://www.medrxiv.org/content/10.1101/2020.09.28.20202028v1) 

indicates that viral load is maximal before onset of symptoms. Over a period of 19 days, Nguyen 

et al. (12) performed daily rRT-PCR assays for viral RNA in nasopharyngeal samples from 17 

symptomatic and 13 asymptomatic persons. Ngyuen et al. (12) developed a curve-fitting model 

for each group to characterize their viral decay kinetics. These models indicate that the mean Ct 

for symptomatic persons was roughly 90% of the mean Ct for asymptomatic persons over the 

first week of the study, after which most persons tested negative or had a Ct near the threshold of 

detection, Ct  = 40. Thus, we estimate that 𝜌𝜌𝐴𝐴 = 0.9, but our estimates of 𝜌𝜌𝐸𝐸 and 𝜌𝜌𝐴𝐴 should be 

considered crude. 

The parameter 𝑘𝑘𝐿𝐿 characterizes the duration of the incubation period. In the model, the 

incubation period is divided into 5 stages (for reasons explained shortly). The waiting time for 

completion of all 5 stages is described by an Erlang distribution with a shape parameter 𝑘𝑘 = 5 

and a scale parameter 𝜇𝜇 = 1/𝑘𝑘𝐿𝐿. Lauer et al. (1) estimated times of exposure and symptom onset 

for 181 confirmed cases and found that the median time between SARS-CoV-2 infection and 

onset of COVID-19 symptoms is 5.1 days. Lauer et al. (1) also found that the empirical 

distribution of waiting times is fit by an Erlang distribution with 𝑘𝑘 = 6 and 𝜇𝜇 = 0.88 days, 

which suggests that the empirical waiting time distribution can be reproduced by dividing the 

incubation period into 6 stages and setting 𝑘𝑘𝐿𝐿 = 1.14 d−1. However, an Erlang distribution with 

𝑘𝑘 = 5 and 𝜇𝜇 = 1.06 d has a nearly identical shape. Because simulation costs are reduced by 

dividing the incubation period into 5 instead of 6 stages, we considered 5 stages in the model. 

The distribution of waiting times estimated by Lauer et al. (1) is reproduced by our model when 

we set 𝑘𝑘𝐿𝐿 = 0.94 d−1. 

The parameters 𝑘𝑘𝑄𝑄 and 𝑗𝑗𝑄𝑄 characterize testing driven quarantine and symptom driven 

self-isolation. We assume that testing is random. Thus, the number of infected persons moving 

into quarantine per day is the number of infected persons subject to quarantine times the fraction 

of the total population tested per day times a multiplier capturing the effect of contact tracing. 
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We take the multiplier to be average household size, 2.5 (6). Thus, assuming ≈500,000 tests per 

day in the United States (The COVID Tracking Project, https://covidtracking.com/data/us-daily) 

and a total population of 330 million (US Census Bureau, https://www.census.gov/popclock), we 

estimate 𝑘𝑘𝑄𝑄 = 0.0038 d−1. The 𝑘𝑘𝑄𝑄 parameter, which characterizes the rate at which exposed 

persons move to quarantine because of testing and contact tracing, incorporates factors such as 

false negative test results. As a simplification, we assume that 𝑘𝑘𝑄𝑄 is the same for each stage of 

disease progression. We assume 𝑗𝑗𝑄𝑄 = 0.4 d−1. With this setting, the median waiting time from 

onset of symptoms to initiation of self-isolation is approximately 40 hours. A faster timescale for 

self-isolation is probably not realistic despite general awareness of the COVID-19 pandemic, 

because as considered in the study of Böhmer et al. (13), for any given person, any give person 

can have a prodromal phase of ≈1 day marked phase of ≈1 day marked by non-COVID-19–

specific symptoms other than fever and cough. 

The parameter 𝑓𝑓𝐴𝐴 is the fraction of infected persons who never develop symptoms. We 

estimate 𝑓𝑓𝐴𝐴 on the basis of information about the COVID-19 outbreak on the Diamond Princess 

cruise ship, as recounted by Sakurai et al. (14) and others (15,16). Before disembarking, 3,618 

passengers and crew members were tested for SARS-CoV-2 infection. Of the 712 persons testing 

positive for SARS-CoV-2, 410 were without symptoms at the time of testing. The Ministry of 

Health, Labour, and Welfare of Japan (18) reported that 311 (76%) of these persons remained 

asymptomatic over the course of long-term follow-up (15,16). Thus, we estimate that 𝑓𝑓𝐴𝐴 = 311
712

≈

0.44, which is consistent with the results of other studies. Lavezzo et al. (unpub. data, 

https://www.medrxiv.org/content/10.1101/2020.04.17.20053157v1) estimated that 43% of all 

infections are asymptomatic. Gudbjartsson et al. (18) found 7/13 persons detected to have SARS-

CoV-2 infection in random-sample population screening did not report symptoms; 43% of all 

SARS-CoV-2–positive participants in the study were symptom-free. 

The parameter 𝑓𝑓𝐻𝐻 is the fraction of symptomatic persons progressing to severe disease. 

We set 𝑓𝑓𝐻𝐻 such that our model predicts a uniform infection fatality rate (IFR) consistent with that 

determined by Perez-Saez et al. (19) from serologic survey results and death incidence reports, 

0.0064 (≈0.64%). Others reported similar IFR estimates (R. Grewelle and G. De Leo, unpub 

data, https://www.medrxiv.org/content/10.1101/2020.05.11.20098780v1.full.pdf). According to 

our model, IFR is given by (1 − 𝑓𝑓𝐴𝐴)𝑓𝑓𝐻𝐻(1 − 𝑓𝑓𝑅𝑅), which is the fraction of all infected cases 
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predicted to have symptoms develop, then progress to severe disease and hospitalization, and 

finally a fatal outcome. Thus, based on our estimates for 𝑓𝑓𝐴𝐴 (0.44) and 𝑓𝑓𝑅𝑅 (0.79) and the 

empirical IFR (0.0064), we set 𝑓𝑓𝐻𝐻 = 0.0064
0.56 ×0.21

≈ 0.054. 

The parameter 𝑐𝑐𝐴𝐴 characterizes the duration of infectiousness of asymptomatic persons in 

the immune response phase. For each of 89 asymptomatic individuals, Sakurai et al. (14) 

reported the time between the first positive PCR test for SARS-CoV-2 and the first of 2 serial 

negative PCR tests. The mean duration of this period was ≈9.1 days. We assume that this period 

coincides with the period of infectiousness and that this period encompasses both the incubation 

period and the immune response phase. With the incubation period for both presymptomatic and 

asymptomatic persons divided into 5 stages of equal mean duration 1/𝑘𝑘𝐿𝐿, the overall mean 

duration of the incubation period is 5/𝑘𝑘𝐿𝐿. Based on our earlier estimate that 𝑘𝑘𝐿𝐿 = 0.94 d−1, the 

mean duration of the incubation period is estimated as 5.3 days. Accordingly, the mean duration 

of the immune clearance phase for asymptomatic persons is estimated as 9.1 d − 5.3 d = 3.8 d, 

and it follows that 𝑐𝑐𝐴𝐴 = 1
3.8 d

≈ 0.26 d−1. 

If 𝑓𝑓𝐻𝐻 ≪ 1, the parameter 𝑐𝑐𝐼𝐼 characterizes the duration of infectiousness of persons who 

develop mild COVID-19 symptoms (i.e., symptoms not severe enough to require 

hospitalization). Wölfel et al. (20) attempted to isolate live virus from clinical throat swab and 

sputum samples collected from 9 patients at multiple time points after the onset of mild COVID-

19 symptoms. Roughly 67% of attempts at 6 days, 38% at 8 days, and 0 at 10 days were 

successful at isolating virus.  Assuming that a negative culture coincides with loss of 

infectiousness, we estimate that 𝑐𝑐𝐼𝐼 = − ln(0.38)
8 d

≈ 0.12 d−1. 

The parameters 𝑓𝑓𝑅𝑅 and 𝑐𝑐𝐻𝐻 characterize the hospital stays of the severely ill. These 

parameters affect predictions of COVID-19–caused deaths and hospital resource utilization but 

do not affect the predicted transmission dynamics, because we assume that hospitalized patients 

are effectively quarantined and do not contribute significantly to disease transmission (i.e., there 

is no 𝐼𝐼𝐻𝐻 term in 𝜙𝜙𝑀𝑀 or 𝜙𝜙𝑃𝑃 [equations 18 and 19]). The parameter 𝑓𝑓𝑅𝑅 is the fraction of 

hospitalized patients who recover, and the parameter 𝑐𝑐𝐻𝐻 characterizes the rate at which patients 

are discharged, either because they recovered or died. Richardson et al. (21) reported that the 

overall median length of hospital stay for 2,634 discharged patients (alive or dead) was 4.1 days. 
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Thus, we estimate that 𝑐𝑐𝐻𝐻 = ln(2)
4.1 d

≈ 0.17 d−1. Among the discharged patients, 553 (21%) died 

(21). Thus, we estimate that 𝑓𝑓𝑅𝑅 = 0.79. 

Likelihood Function Used in Inference of Model Parameter Values 

We assumed that the likelihood of a set of adjustable parameter values 𝜃𝜃𝐹𝐹 given a report 

of 𝛿𝛿𝐶𝐶𝑖𝑖 new cases on calendar date 𝒟𝒟𝑖𝑖, which we will denote as ℒ𝑖𝑖(𝜃𝜃𝐹𝐹; 𝛿𝛿𝛿𝛿𝑖𝑖), is given by the 

following equation: 

ℒ𝑖𝑖(𝜃𝜃𝐹𝐹;𝛿𝛿𝐶𝐶𝑖𝑖) = nbinom(𝛿𝛿𝐶𝐶𝑖𝑖; 𝑟𝑟,𝑝𝑝𝑖𝑖) = �
𝛿𝛿𝐶𝐶𝑖𝑖 + 𝑟𝑟 − 1
𝛿𝛿𝐶𝐶𝑖𝑖 − 1 � 𝑝𝑝𝑖𝑖𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)𝛿𝛿𝐶𝐶𝑖𝑖 

[25] 

where 𝛿𝛿𝐶𝐶𝑖𝑖 is a nonnegative integer (the number of new cases reported), 𝑖𝑖 is an integer indicating 

the date 𝒟𝒟𝑖𝑖 or the period (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1); nbinom(𝛿𝛿𝐶𝐶𝑖𝑖; 𝑟𝑟,𝑝𝑝𝑖𝑖) is the probability mass function of the 

negative binomial distribution NB(𝑟𝑟,𝑝𝑝𝑖𝑖), which has 2 parameters, 𝑟𝑟 > 0 and 𝑝𝑝𝑖𝑖 ∈ [0,1]; and 𝜃𝜃𝐹𝐹 

is a model-dependent ordered set of feasible (i.e., allowable) values for the adjustable model 

parameters (e.g., 𝑁𝑁, 𝑡𝑡0, 𝑘𝑘, and 𝜃𝜃 in the case of the curve-fitting model) augmented with a feasible 

value for 𝑟𝑟. We defined ti as t 𝑡𝑡𝑖𝑖 ≡ 𝑡𝑡0 + 𝑖𝑖 d, where 𝑡𝑡0 > 0 is 00:00 hours of 𝒟𝒟0, the start date of 

the local epidemic. We take the dispersion parameter 𝑟𝑟 of NB(𝑟𝑟,𝑝𝑝𝑖𝑖) to be date and time-

independent (i.e., applicable to all surveillance days) and infer the value of 𝑟𝑟 jointly with the 

values of the model parameters. 

As stated previously, we consider surveillance testing to be a stochastic process in that 

we assume that the fraction of cases detected varies stochastically from day to day. Furthermore, 

we assume that the randomness in the number of new cases detected on a given date 𝑡𝑡𝑖𝑖 is 

captured by a negative binomial distribution NB(𝑟𝑟, 𝑝𝑝𝑖𝑖), where 𝑟𝑟 is a ., 𝑡𝑡𝑖𝑖-independent parameter 

and 𝑝𝑝𝑖𝑖 is a 𝑡𝑡𝑖𝑖-dependent parameter. Our assumptions mean that, for each date 𝑡𝑡𝑖𝑖, we are taking 

the predicted number of new cases, 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1), to correspond to 𝔼𝔼[NB(𝑟𝑟,𝑝𝑝𝑖𝑖)], which equals 

𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)/𝑝𝑝𝑖𝑖. For this relationship to hold true, each distributional parameter 𝑝𝑝𝑖𝑖 must satisfy the 

following constraint: 

𝑝𝑝𝑖𝑖 =
𝑟𝑟

𝑟𝑟 + 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1)
. [26] 

We use this constraint to determine the value of 𝑝𝑝𝑖𝑖 for all 𝑡𝑡𝑖𝑖. As stated previously, the 

value of 𝑟𝑟 is jointly inferred with the values of the adjustable compartmental model parameters. 
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If 𝑚𝑚 + 1 daily case reports are available, from date 𝒟𝒟0 to date 𝒟𝒟𝑚𝑚, we assumed that each 

likelihood ℒ𝑖𝑖(𝜃𝜃𝐹𝐹;𝛿𝛿𝛿𝛿𝑖𝑖) given by equations 25 and 26 is independent. Thus, we have: 

ℒ(𝜃𝜃𝐹𝐹; {𝛿𝛿𝐶𝐶𝑖𝑖}𝑖𝑖=0𝑚𝑚 ) = � logℒ𝑖𝑖(𝜃𝜃𝐹𝐹 ; 𝛿𝛿𝐶𝐶𝑖𝑖)
𝑚𝑚

𝑖𝑖=0

 
[27] 

where ℒ(𝜃𝜃𝐹𝐹; {𝛿𝛿𝐶𝐶𝑖𝑖}𝑖𝑖=0𝑚𝑚 ) is the likelihood of 𝜃𝜃𝐹𝐹 given all available case reports {𝛿𝛿𝐶𝐶𝑖𝑖}𝑖𝑖=0𝑚𝑚 . As stated 

previously, 𝛿𝛿𝐶𝐶𝑖𝑖 is the number of new cases reported on date 𝒟𝒟𝑖𝑖 and 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) is the model 

prediction of 𝛿𝛿𝐶𝐶𝑖𝑖. Furthermore, recall that 𝜃𝜃𝐹𝐹 is defined as a model-dependent ordered set of 

feasible adjustable model parameter values augmented with a feasible value for the likelihood 

function parameter 𝑟𝑟. The identity of 𝜃𝜃𝐹𝐹 depends on whether we are using equation 27 to make 

inferences conditioned on the curve-fitting model or the compartmental model, meaning we use 

equation 27 in both cases but the identity of 𝜃𝜃𝐹𝐹 depends on the model being considered. The 

ordering of parameter values within the set 𝜃𝜃𝐹𝐹 is arbitrary but should be consistent. 

When we use equations 25–27 in combination with the compartmental model and select 

𝑛𝑛 = 0, the elements of 𝜃𝜃𝐹𝐹 are 𝑡𝑡0, 𝜎𝜎, 𝑝𝑝0, 𝜆𝜆0, 𝛽𝛽, and 𝑓𝑓𝐷𝐷. In this case, we obtained 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) from 

equation 24. When we use equations 25–27 in combination with the curve-fitting model, the 

elements of 𝜃𝜃𝐹𝐹 are 𝑁𝑁, 𝑡𝑡0, 𝑘𝑘, 𝜃𝜃, and 𝑟𝑟. In this case, we obtained 𝐼𝐼 [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1]) from equation 31. 

Bayesian Inference and Online Learning 

We chose the Bayesian inference framework to parametrize the models with uncertainty 

quantification. In Bayesian inference, given a set of data 𝐷𝐷, the probability of each set of the 

parameters, denoted in 𝜃𝜃𝐹𝐹 , is constrained by the Bayes formula: 

ℙ{𝜃𝜃𝐹𝐹|𝐷𝐷} =
ℙ{𝐷𝐷|𝜃𝜃𝐹𝐹} ℙ{𝜃𝜃𝐹𝐹}

∫ ℙ{𝜃𝜃𝐹𝐹′|𝐷𝐷} ℙ{𝜃𝜃𝐹𝐹′} d𝜃𝜃𝐹𝐹′Ω
 . 

[28] 

Here, ℙ{𝜃𝜃𝐹𝐹} is the prior parameter distribution, which represents our belief of how the 

model parameters should distribute in the parameter space Ω, and ℙ{𝐷𝐷|𝜃𝜃𝐹𝐹} is the likelihood of 

the parameter set 𝜃𝜃𝐹𝐹 given the dataset 𝐷𝐷, that is, ℒ(𝜃𝜃𝐹𝐹; {𝛿𝛿𝐶𝐶𝑖𝑖}𝑖𝑖=0𝑚𝑚 ) in equation 27. In general, 

evaluating the posterior parameter distribution ℙ{𝜃𝜃𝐹𝐹|𝐷𝐷} is a difficult computation, mainly 

because of the high-dimensional integration of the term ∫ ℙ{𝜃𝜃𝐹𝐹′|𝐷𝐷} ℙ{𝜃𝜃𝐹𝐹′} d𝜃𝜃𝐹𝐹′Ω , a term often 
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referred to as the evidence. Thus, for high-dimensional models, we relied on Markov chain 

Monte Carlo (MCMC) techniques to sample the posterior parameter distribution ℙ{𝜃𝜃𝐹𝐹|𝐷𝐷}. 

In contrast of many modeling analyses that focus on identifying parameter distributions, 

we were interested in projections of models in which parameters are inferred by past data to 

project into the future. To this end, we evaluated our model with a probabilistic parameter set 

distributed by the obtained posterior distribution ℙ{𝜃𝜃𝐹𝐹|𝐷𝐷}. Formally, we denoted the prediction 

of the confirmed cases between future day 𝑡𝑡𝑖𝑖 and 𝑡𝑡𝑖𝑖+1 by our deterministic model with a set of 

parameters 𝜃𝜃𝐹𝐹 by 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1;𝜃𝜃𝐹𝐹). Our deterministic prediction represents the mean of the 

fundamentally random new confirmed cases reported in a future interval (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1). If only 

parametric uncertainty that propagates through the deterministic model is available, the 

confirmed cases reported in a future interval (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) would be distributed according to 

∫ 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1;𝜃𝜃𝐹𝐹) ℙ{𝜃𝜃𝐹𝐹|𝐷𝐷} d𝜃𝜃𝐹𝐹Ω  . However, observation noise also is apparent, for which we 

model by a negative binomial distribution. Observation noise also needs to be injected into the 

prediction to quantify the full uncertainty. The full prediction, accounting for parametric 

uncertainty, is a random variable distributed according to: 

� nbiom �𝑖𝑖; 𝑟𝑟,
𝑟𝑟

𝑟𝑟 + 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1;𝜃𝜃𝐹𝐹)�  ℙ{𝜃𝜃𝐹𝐹|𝐷𝐷} d𝜃𝜃𝐹𝐹
Ω

. [29] 

In practice, the above random variable is resampled from the posterior chain derived from 

the MCMC sampling. We denoted the MCMC posterior chain by �𝜃𝜃𝐹𝐹
(1),𝜃𝜃𝐹𝐹

(2) …𝜃𝜃𝐹𝐹
(𝑁𝑁) �. We 

sampled the posterior chain and denoted the resampled parameter set by 𝜃𝜃𝐹𝐹𝑠𝑠 and the deterministic 

prediction of that resampled parameter in interval (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) by 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1;𝜃𝜃𝐹𝐹𝑠𝑠). Then, we generated 

a negative binomial random number in which we set the first parameter of the negative binomial 

distribution as 𝑟𝑟𝑠𝑠/(𝑟𝑟𝑠𝑠 + 𝐼𝐼(𝑡𝑡𝑖𝑖+1, 𝑡𝑡𝑖𝑖;𝜃𝜃𝐹𝐹𝑠𝑠)) where 𝑟𝑟𝑠𝑠 is the resampled 𝑟𝑟 and also is a free parameter in 

𝜃𝜃𝐹𝐹𝑠𝑠 and is inferred in the MCMC. We repeated the resampling procedures and used the generated 

samples to compute the percentile of the historic observations and future predictions. 

Our aim was to perform the Bayesian inference daily as soon as a new regional 

confirmed case number was reported. Although the Bayesian framework enabled a sequential 

analysis, we used the previous derived posterior distribution as a prior so that new inference 

problems involved only one new data point. In practice, such an analysis is difficult if the 

posterior distribution cannot be emulated or interpolated from the discrete posterior chain. Our 
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analysis showed that in some regions, the posterior was far from Gaussian, making accurate 

interpolation or emulation difficult. Thus, we did not adopt this workflow, and instead, we 

conducted the inference with all the data points collected up to the time of inference. 

Nevertheless, we started the MCMC chain from the maximum a posteriori estimator estimated 

from the previous derived chain, and we also used the previously derived chain for estimating the 

optimal covariance matrix for the proposal of the normal symmetric random-walk Metropolis 

sampler. Our approach enabled online learning of the optimal proposal, which significantly 

reduces the mixing time. 

Technical Details of Approach and Numerical Methods Used in Bayesian 
Inference 

Because the variability of the data due to the regional and temporal differences, it is 

difficult to identify a universal sampling strategy (the proposal kernel). Thus, we adopted an 

adaptive Metropolis algorithm, specifically Algorithm 4 in Andrieu and Thoms (22) to 

accommodate the regional and temporal differences. 

For all the model parameters, we assume their priors are uniformly distributed. Denote 

the 0:00 of the calendar date of the first confirmed case in a specific region by 𝑡𝑡first and the total 

population of that region by 𝑆𝑆0. For the curve-fitting model, we assume the parameters are 

bounded by 𝑁𝑁 ∈ (0, 𝑆𝑆0), 𝑡𝑡0 ∈ (𝑡𝑡firs𝑡𝑡 − 21, 𝑡𝑡firs𝑡𝑡), 𝜇𝜇 ∈ (0,106), 𝑘𝑘 ∈ (0,106), 𝜃𝜃 ∈ (0,106). For the 

compartmental model with 𝑛𝑛 = 0, we assume that the parameters are bounded by 𝑡𝑡0 ∈ (0, 𝑡𝑡⋆), 

𝜎𝜎 ∈ (𝑡𝑡0, 𝑡𝑡⋆ − 𝑡𝑡0), 𝛽𝛽 ∈ (0,106), 𝜆𝜆0 ∈ (0,10), 𝑝𝑝0 ∈ (0,1), and 𝑓𝑓𝐷𝐷 ∈ (0,1), where 𝑡𝑡⋆ is the time at 

which inference is performed. We assume 𝑟𝑟 ∈ (0,106) for both models. The limits on parameter 

values reflect feasibility constraints or bounds determined by trial-and-error to ensure that the 

posterior mass is contained within the hypercube defined by the limits. We adopted rejection-

based sampling to assure the parameter values are sampled in the hypercube. 

We start inference with an isotropic proposal kernel that randomly perturbs the parameter 

values by independent Gaussian proposals for which standard deviations are set to be 5% of the 

parameter values. We carry out the standard Metropolis–Hastings algorithm for 5 × 104 

iterations first to identify local minimum. Then, we turned on the adaptive Metropolis algorithm 

to calculate the covariance matrix on-the-fly for another 5 × 104 iterations, after which we 
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turned on an on-the-fly learning for optimal proposed increment by using 𝜆𝜆 from algorithm 4 of 

Andrieu and Thoms (22). Because the weight for learning the proposed increment decays 

1/iteration (22), the proposed increment stabilizes after about 103 more iterations. We began to 

collect the statistics from 1.5 × 105 iteration until the simulation finishes at 6 × 105 iterations. 

Except for the first time of the procedure (i.e., online learning and day-to-day operation), 

we warm-started the simulation from the previously obtained best-fit (maximum a posteriori 

estimator) and with the previously obtained covariance matrix and proposed increment. We 

carried out standard Metropolis–Hastings algorithms for 2.5 × 104 iterations, first to identify a 

local minimum noting that it was often not far from the previously-identified maximum a 

posteriori estimate. Then, we turned on the adaptive MCMC algorithm to calculate the 

covariance matrix on-the-fly for another 5 × 104 iteration. Then we used another 2.5 × 104 

iterations to calculate the optimal proposed increment. We started to collect statistical 

information from 1 × 105 to 4 × 105 iterations when the simulation finishes. 

Model Selection 

We used a heuristic model-selection procedure to select the most parsimonious value of 

n, which determines the structure of the compartmental model (i.e., the number of social 

distancing periods considered) and the number of adjustable parameters describing social 

distancing (3 for each social-distancing period). The procedure for deciding between 𝑛𝑛 = 0 and 

𝑛𝑛 = 1 is as follows. We calculated Aikake information criterion (AIC) (23) values for 𝑛𝑛 = 0 and 

𝑛𝑛 = 1 versions of the compartmental model. Similarly, we calculated Bayesian information 

criterion (BIC) (23) values for the 2 versions of the model. We defined ΔAIC as AIC𝑛𝑛=0 −

AIC𝑛𝑛=1 and ΔBIC as BIC𝑛𝑛=0 − BIC𝑛𝑛=1, where AIC𝑛𝑛=0 (AIC𝑛𝑛=1) is the AIC value calculated 

for the 𝑛𝑛 = 0 (𝑛𝑛 = 1) version of the compartmental model and, similarly, BIC𝑛𝑛=0 (BIC𝑛𝑛=1) is 

the BIC value calculated for the 𝑛𝑛 = 0 (𝑛𝑛 = 1) version of the compartmental model. Burnham 

and Anderson (23) suggest we can interpret ΔAIC>10 to mean that the evidence strongly 

supports the 𝑛𝑛 = 1 version of the model. In other words, we are justified in using 𝑛𝑛 = 1 (the 

more complex version of the model) instead of 𝑛𝑛 = 0 when ΔAIC>10. However, we take a more 

conservative approach. We adopt 𝑛𝑛 = 1 over 𝑛𝑛 = 0 only when both ΔAIC>10 and ΔBIC>10. We 

are using the same approach described above to decide between 𝑛𝑛 = 1 and 𝑛𝑛 = 2. 
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Prediction Updates 

Daily predictions based on region-specific parameterizations of the compartmental model 

are being archived at a GitHub repository (https://github.com/lanl/COVID-19-Predictions). It 

should be noted that the model’s structural parameter n, which determines the number of distinct 

social-distancing periods considered in the model, varies from region to region and can change 

over time. 

Forecasting Accuracy 

We performed out-of-sample testing of forecasting accuracy for inferences conditioned 

on the compartmental model and chose value of 𝑛𝑛 through model selection. For predictions 1, 4, 

and 7 days ahead, we determined the empirical coverage, meaning the frequencies characterizing 

how often the empirical data fell below predicted quantiles. In this analysis, we considered 

surveillance data available during July 14–September 9, 2020. We obtained results using the 

combined out-of-sample data and predictions for all 15 metropolitan statistical areas (MSAs) in 

our study (Appendix Figure 5). As shown, our overall predictions are biased toward 

underprediction of new case detection, although the bias is weak. 

Evaluation of a Stochastic Version of the Compartmental Model 

A compartmental model may be formulated as either a deterministic model or a 

stochastic model. Use of a deterministic model is a potential liability, because assumptions of a 

deterministic model can break down in some situations, necessitating use of a stochastic model. 

For this reason, we performed an analysis to determine whether a deterministic or stochastic 

would be better suited for analysis of our data of interest. 

We constructed a person-based continuous-time Markov chain with consideration of the 

same processes as those in our deterministic compartmental model. The intrinsic stochasticity 

arises from the discreteness of populations. We followed the standard procedure to construct a 

set of stochastic differential equations (SDEs), by first formulating a master equation, then 

performing the Kramers-Moyal expansion to obtain the approximate continuum-limit Fokker-

Planck equation in the large-population limit, and then formulating the corresponding SDEs by 

using the procedure described by Lin et al. (24,25). 
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In simulations, we used the Euler-Maruyama integrator to evolve the SDEs with a time 

step of 0.05 days. We ensured the timestep was sufficiently small through a trial-and-error 

approach. 

We adopted a standard particle filter technique to identify the Maximum Likelihood 

Estimator of the parameters of the stochastic model, noting that our process is not time-

homogeneous due to different episodes of distinct social distancing practices. We used the data 

from the New York City (New York) and Miami (Florida) MSAs from January 21–August 29, 

2020 to parametrize the stochastic model. 

After identifying the point estimator, we calculated the predicted quantiles as for the 

deterministic model. Finally, we quantified the in-sample empirical coverage (i.e., the empirical 

frequencies quantifying when training-data points fall below the predicted quantiles). When the 

noise model is correct, one would expect that such frequencies should coincide with the 

prediction. 

For the New York City MSA, we successfully reproduced the case reporting data 

(Appendix Figure 6). For the Miami MSA, we also successfully reproduced the case reporting 

data (Appendix Figure 7). We note that the New York City epidemic curve has a single peak, 

whereas the Miami epidemic curve has 2 peaks. By visually inspecting the predictive posteriors, 

we noted that the stochastic models lead to higher uncertainty than the deterministic models for 

New York, NY and Miami, FL (Appendix Figures 6,7). The in-sample calibration curves show 

that the SDE model in both cases is farther away from the diagonal than the deterministic model, 

indicating that the stochastic models assert more uncertainty than the data distribution (Appendix 

Figure 6, panel D; Appendix Figure 7, panel D). Thus, deterministic versions of the model seem 

more appropriate for forecasting than stochastic versions, at least currently. 

Evaluation of a Curve-Fitting Model 

Various fitting functions, or curve-fitting models, have been used to reproduce COVID-

19 incidence data and to make forecasts of new cases (26–31; IHME COVID-19 Health Service 

Utilization Forecasting Team, unpub. data, 

https://www.medrxiv.org/content/10.1101/2020.03.27.20043752v1; Nishimoto Y, unpub. data, 

https://www.medrxiv.org/content/10.1101/2020.07.02.20144899v2). We decided to evaluate this 
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approach by using the fitting function described below, which is a discretized convolution of 2 

integrals. This approach is related to an approach used to analyze AIDS data (32,33). Use of a 

curve-fitting model has the advantage of not requiring insights into disease transmission 

mechanisms, which can be particularly advantageous during outbreaks of new or emerging 

diseases. A drawback of a curve-fitting model is that it might be limited in its ability to 

reproduce empirical epidemic curves. We considered a fitting function that can generate an 

asymmetric curve, such as an epidemic curve with 2 timescales, in which fast growth and slow 

decay in new daily cases occur (Appendix Figure 8). Like many such models used in 

epidemiology, the curve-fitting model considered here can generate only single-peaked curves. 

Because the MSAs of interest have experienced multiple-wave disease-transmission dynamics 

(i.e., >1 period of increasing disease incidence), we are no longer using the curve-fitting model 

in forecasting. We present the curve-fitting model and results obtained with it to illustrate how a 

curve-fitting model can be combined with Bayesian inference to generate forecasts with 

uncertainty quantification. 

For each MSA of interest, we assumed that there is an infection curve 𝑄𝑄(𝑡𝑡) describing the 

number of persons who become infected at time 𝑡𝑡 with SARS-CoV-2 and who will later be 

detected in local COVID-19 surveillance efforts. Furthermore, we assumed that this curve has a 

shape that can be generated and reproduced by 𝜌𝜌Γ(𝑡𝑡, 𝑘𝑘,𝜃𝜃), the probability density function of a 

gamma distribution Γ(𝑘𝑘, 𝜃𝜃). In other words, we assumed that 𝑄𝑄(𝑡𝑡) = 𝑁𝑁𝜌𝜌Γ(𝑡𝑡, 𝑘𝑘,𝜃𝜃), where 𝑁𝑁 is a 

scaling factor that we can identify as the number of persons who will be detected over the entire 

course of the local epidemic. The shape of a gamma distribution is flexible and determined by 

the values of its two parameters: 𝑘𝑘, which is called the shape parameter, and 𝜃𝜃, which is called 

the scale parameter. The functional form that we assume for 𝑄𝑄(𝑡𝑡) allows the curve-fitting model 

to reproduce the shape of an epidemic curve having 2 timescales. Early in the pandemic, many 

empirical COVID-19 epidemic curves appeared to have 2 timescales: an initial period during 

which new case reports increase relatively quickly from day to day followed by a period during 

which new case reports decrease relatively slowly from day to day. 

We did not take the infection curve 𝑄𝑄(𝑡𝑡) to correspond directly to the number of new 

COVID-19 cases reported on the date encompassing time 𝑡𝑡, because only symptomatic persons 

are likely to be detected in COVID-19 surveillance testing (to a first approximation). This 
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situation complicates our model because a potentially lengthy, variable delay in the onset of 

symptoms after infection is known (1). We assume that the waiting time 𝜏𝜏 − 𝑡𝑡 for the onset of 

COVID-19 symptoms after SARS-CoV-2 infection at time 𝑡𝑡 is distributed according to a log-

normal distribution. Let us use 𝜌𝜌𝐿𝐿𝐿𝐿(𝜏𝜏 − 𝑡𝑡; 𝜇𝜇𝐿𝐿𝐿𝐿,𝜎𝜎𝐿𝐿𝐿𝐿) to denote the probability density function of 

the waiting-time distribution modeled by a log-normal distribution with parameters 𝜇𝜇𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐿𝐿𝐿𝐿 

set to the values estimated by Lauer et al. (1). We used 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) to denote the predicted number 

of new COVID-19 cases reported within a period beginning at time 𝑡𝑡𝑖𝑖 ≡ 𝑡𝑡0 + 𝑖𝑖 d and ending at 

time 𝑡𝑡𝑖𝑖+1, where 𝑡𝑡0 > 0 is the start time of the local epidemic. We assumed that surveillance 

testing for SARS-CoV-2 infection starts prior to time 𝑡𝑡0, and we took time 𝑡𝑡 = 0 to correspond 

to 00:00 hours on January 21, 2020, the date on which detection of the first US COVID-19 case 

was widely reported (34). Under these assumptions, 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) is given by a convolution of 

integral functions by the following expression: 

𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) = 𝑁𝑁� � 𝜌𝜌𝐿𝐿𝐿𝐿(𝜏𝜏 − 𝑠𝑠; 𝜇𝜇𝐿𝐿𝐿𝐿,𝜎𝜎𝐿𝐿𝐿𝐿) 𝜌𝜌Γ( 𝑠𝑠 − 𝑡𝑡0; 𝑘𝑘, 𝜃𝜃) d𝑠𝑠 d𝜏𝜏
𝜏𝜏

𝑡𝑡0

𝑡𝑡𝑖𝑖+1

𝑡𝑡𝑖𝑖
 

[30] 

Of note, 𝑠𝑠 in this equation is a dummy variable of integration. Equation 30 is a special 

case of the general model proposed by Brookmeyer and Gail (32) for predicting future AIDS 

cases. 

Equation 30 can be evaluated through numerical quadrature, but this procedure is 

computationally expensive. To overcome this limitation, we replaced the double integral in 

equation 30 with a sum, and we calculate 𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) using the following expression instead: 

𝐼𝐼(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) = 𝐾𝐾0𝑄𝑄𝑖𝑖 + 𝐾𝐾1𝑄𝑄𝑖𝑖−1 + ⋯+ 𝐾𝐾𝑖𝑖−1𝑄𝑄1 + 𝐾𝐾𝑖𝑖𝑄𝑄0 = �𝐾𝐾𝑖𝑖−𝑗𝑗𝑄𝑄𝑗𝑗

𝑖𝑖

𝑗𝑗=0

 
[31] 

where 

𝐾𝐾𝑖𝑖−𝑗𝑗 = � 𝜌𝜌𝐿𝐿𝐿𝐿(𝑡𝑡; 𝜇𝜇𝐿𝐿𝐿𝐿,𝜎𝜎𝐿𝐿𝐿𝐿)𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖−𝑗𝑗+1

𝑡𝑡𝑖𝑖−𝑗𝑗
= 𝐹𝐹𝐿𝐿𝐿𝐿� 𝑡𝑡𝑖𝑖−𝑗𝑗+1; 𝜇𝜇𝐿𝐿𝐿𝐿,𝜎𝜎𝐿𝐿𝐿𝐿� − 𝐹𝐹𝐿𝐿𝐿𝐿( 𝑡𝑡𝑖𝑖−𝑗𝑗; 𝜇𝜇𝐿𝐿𝐿𝐿,𝜎𝜎𝐿𝐿𝐿𝐿) 

[32] 

and 

𝑄𝑄𝑗𝑗 =  𝑁𝑁� 𝜌𝜌Γ(𝑡𝑡 − 𝑡𝑡0; 𝑘𝑘,𝜃𝜃)𝑑𝑑𝑑𝑑
𝑡𝑡𝑗𝑗+1

𝑡𝑡𝑗𝑗
= 𝑁𝑁[𝐹𝐹Γ�𝑡𝑡𝑗𝑗+1 − 𝑡𝑡0; 𝑘𝑘, 𝜃𝜃� − 𝐹𝐹Γ�𝑡𝑡𝑗𝑗 − 𝑡𝑡0; 𝑘𝑘, 𝜃𝜃�] 

[33] 
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In equation 31, the 𝐾𝐾𝑖𝑖−𝑗𝑗 terms are weighting functions (i.e., kernels) that account for the 

variable duration of the incubation period, and the 𝑄𝑄𝑗𝑗 terms represent cumulative numbers of 

new detectable infections occurring over discrete 1-day periods. In equation 32, each 𝐹𝐹𝐿𝐿𝐿𝐿 term 

denotes a cumulative distribution function (CDF) of a log-normal distribution, and in equation 

33, each 𝐹𝐹Γ term denotes a cumulative distribution function of a gamma distribution. In other 

words, 𝑄𝑄𝑗𝑗 is the cumulative number of persons infected in the period (𝑡𝑡𝑗𝑗 , 𝑡𝑡𝑗𝑗+1) who will 

eventually be detected, and 𝐾𝐾𝑖𝑖−𝑗𝑗 is the probability that one of these persons becomes 

symptomatic and is detected in the period (𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1), where 𝑡𝑡𝑖𝑖 ≥ 𝑡𝑡𝑗𝑗. 

The functional form of our curve-fitting model is defined by equations 31–33, which are 

derived from equation 30. As can be seen by inspecting equation 30, the curve-fitting model has 

6 parameters: 𝑁𝑁, 𝑡𝑡0 (which is hidden in the definition of 𝑡𝑡𝑖𝑖), 𝑘𝑘, 𝜃𝜃, 𝜇𝜇𝐿𝐿𝐿𝐿, and 𝜎𝜎𝐿𝐿𝐿𝐿. As we noted 

previously, estimates are available for 𝜇𝜇𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐿𝐿𝐿𝐿 from Lauer et al. (1). These parameters 

characterize the variable duration of the incubation period, which starts at infection and ends at 

the onset of symptoms. Thus, we take 𝜇𝜇𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐿𝐿𝐿𝐿 to have fixed region-independent values. We 

take the remaining parameters, 𝑁𝑁 (a population size/scaling factor), 𝑡𝑡0 (the start time of the local 

epidemic), and 𝑘𝑘 and 𝜃𝜃 (the parameters that determine the shape of the infection curve 𝑄𝑄(𝑡𝑡)), to 

have adjustable region-specific values. In our daily inferences, we considered 1 additional 

region-specific adjustable parameter, the dispersal parameter of the likelihood function (see 

equation 27 above). The value of this parameter, 𝑟𝑟, is inferred jointly with the values of 𝑁𝑁, 𝑡𝑡0, 𝑘𝑘, 

and 𝜃𝜃. 

For the period of January–June 2020, for each of the 15 MSAs of interest, we 

parameterized on a daily basis a curve-fitting model for consistency with all daily reports of new 

confirmed cases available at the time. The methodology used was the same as that used for 

inferences conditioned on the compartmental model unless otherwise noted. For each MSA, the 

curve-fitting model was taken to have 4 adjustable parameters: 𝑁𝑁, the total number of infected 

persons who will be detected over the entire course of the local epidemic; 𝑡𝑡0, the start time of the 

local epidemic; and 𝑘𝑘 and 𝜃𝜃, the shape and scale parameters of a gamma (Γ) distribution 

(Appendix Table 2). Inference of adjustable parameter values was based on a negative binomial 

likelihood function, which is given by equation 27. The dispersal parameter 𝑟𝑟 of the likelihood 

was taken to be adjustable; its value was jointly inferred with those of 𝑁𝑁, 𝑡𝑡0, 𝑘𝑘, and 𝜃𝜃. Inferences 
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are conditioned on fixed parameter estimates for 𝜇𝜇𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐿𝐿𝐿𝐿 (Appendix Table 2). These 

parameters, the mean and standard deviation of a log-normal distribution, characterized the 

incubation period (i.e., the waiting time from infection to onset of symptoms) (1). For any given 

(1-day) surveillance period and specified settings for parameter values, a prediction of the curve-

fitting model for expected new cases detected was generated by evaluating the sum in equation 

31. A prediction of the actual number of new cases detected was obtained by entering the 

predicted expected number of new cases (according to either the curve-fitting or compartmental 

model) into equation 29. 

We obtained predictive inferences conditioned on the curve-fitting model for all 15 

MSAs of interest (Appendix Figure 9). These results demonstrate that, for the timeframe of 

interest, the curve-fitting model was capable of reproducing many of the MSA-specific empirical 

epidemic curves. The limitations of curve fitting can be seen by examining predictions for the 

Atlanta, GA MSA, where we noted a high variability in the daily number of new cases detected. 

Although we did not see a clear downward trend in the data, the curve-fitting model nevertheless 

predicts a peak in late-April/early-May 2020 and a downward trend thereafter. This prediction is 

obtained because the model, by design, is only capable of generating single-peaked epidemic 

curves that rise and then fall. 

References 

1. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of 

coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and 

application. Ann Intern Med. 2020;172:577–82. https://doi.org/10.7326/M20-0504 PubMed 

2. Sia SF, Yan LM, Chin AWH, Fung K, Choy KT, Wong AYL, et al. Pathogenesis and transmission of 

SARS-CoV-2 in golden hamsters. Nature. 2020;583:834–8. PubMed 

https://doi.org/10.1038/s41586-020-2342-5 

3. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse 

transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann 

Intern Med. 2020;173:262–7. PubMed https://doi.org/10.7326/M20-1495 

4. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin JB, Olsson A, et al.; Karolinska 

COVID-19 Study Group. Robust T cell immunity in convalescent individuals with asymptomatic 

https://doi.org/10.7326/M20-0504
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32150748&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32408338&dopt=Abstract
https://doi.org/10.1038/s41586-020-2342-5
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32422057&dopt=Abstract
https://doi.org/10.7326/M20-1495


 

Page 26 of 35 

or mild COVID-19. Cell. 2020;183:158–168.e14. PubMed 

https://doi.org/10.1016/j.cell.2020.08.017 

5. Addetia A, Crawford KHD, Dingens A, Zhu H, Roychoudhury P, Huang ML, et al. Neutralizing 

antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel 

outbreak with high attack rate. J Clin Microbiol. 2020;58:e02107-20. PubMed 

https://doi.org/10.1128/JCM.02107-20 

6. To KKW, Hung IFN, Ip JD, Chu AWH, Chan WM, Tam AR, et al. COVID-19 re-infection by a 

phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. 

Clin Infect Dis. 2020 August 25 [Epub ahead of print]. PubMed 

https://doi.org/10.1093/cid/ciaa1275 

7. United States Census Bureau. Metropolitan and micropolitan statistical areas population totals and 

components of change: 2010–2019. 2020 [cited 2020 Jul 1]. 

https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-metro-and-micro-

statistical-areas.html 

8. Executive Office of the President. OMB bulletin no. 15-01. 2020 [cited 2020 Jul 1]. 

https://www.bls.gov/bls/omb-bulletin-15-01-revised-delineations-of-metropolitan-statistical-

areas.pdf 

9. Elderd BD, Dukic VM, Dwyer G. Uncertainty in predictions of disease spread and public health 

responses to bioterrorism and emerging diseases. Proc Natl Acad Sci U S A. 2006;103:15693–7. 

PubMed https://doi.org/10.1073/pnas.0600816103 

10. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, et al.; Public Health–Seattle 

and King County; CDC COVID-19 Investigation Team. Presymptomatic SARS-CoV-2 infections 

and transmission in a skilled nursing facility. N Engl J Med. 2020;382:2081–90. 

https://doi.org/10.1056/NEJMoa2008457 

11. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and 

transmissibility of COVID-19. [Erratum in: Nat Med. 2020;26:1491–3]. Nat Med. 2020;26:672–

5. PubMed https://doi.org/10.1038/s41591-020-0869-5 

12. Nguyen VVC, Vo TL, Nguyen TD, Lam MY, Ngo NQM, Le MH, et al. The natural history and 

transmission potential of asymptomatic SARS-CoV-2 infection. Clin Infect Dis 2020;ciaa711 

https://doi.org/10.1093/cid/ciaa711 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32979941&dopt=Abstract
https://doi.org/10.1016/j.cell.2020.08.017
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32826322&dopt=Abstract
https://doi.org/10.1128/JCM.02107-20
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32840608&dopt=Abstract
https://doi.org/10.1093/cid/ciaa1275
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17030819&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17030819&dopt=Abstract
https://doi.org/10.1073/pnas.0600816103
https://doi.org/10.1056/NEJMoa2008457
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32296168&dopt=Abstract
https://doi.org/10.1038/s41591-020-0869-5
https://doi.org/10.1093/cid/ciaa711


 

Page 27 of 35 

13. Böhmer MM, Buchholz U, Corman VM, Hoch M, Katz K, Marosevic DV, et al. Investigation of a 

COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case 

series. Lancet Infect Dis. 2020;20:920–8. PubMed https://doi.org/10.1016/S1473-3099(20)30314-

5 

14. Sakurai A, Sasaki T, Kato S, Hayashi M, Tsuzuki SI, Ishihara T, et al. Natural history of 

asymptomatic SARS-CoV-2 infection. N Engl J Med. 2020;383:885–6. 

https://doi.org/10.1056/NEJMc2013020 PubMed 

15. Emery JC, Russell TW, Liu Y, Hellewell J, Pearson CAB, Atkins KE, et al.; CMMID COVID-19 

Working Group. The contribution of asymptomatic SARS-CoV-2 infections to transmission on 

the Diamond Princess cruise ship. eLife. 2020;9:e58699. PubMed 

https://doi.org/10.7554/eLife.58699 

16. Expert Taskforce for the COVID-19 Cruise Ship Outbreak. Epidemiology of the COVID-19 outbreak 

on cruise ship quarantined at Yokohama, Japan, February 2020. Emerg Infect Dis. 2020;26:2591–

7. PubMed https://doi.org/10.3201/eid2611.201165 

17. Ministry of Health, Labour and Welfare of Japan. Official report on the cruise ship Diamond Princess, 

May 1, 2020. 2020 [cited 2020 Jul 1]. https://www.mhlw.go.jp/stf/newpage_11146.html 

18. Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. Spread of 

SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020;382:2302–15. PubMed 

https://doi.org/10.1056/NEJMoa2006100 

19. Perez-Saez J, Lauer SA, Kaiser L, Regard S, Delaporte E, Guessous I, et al. Serology-informed 

estimates of SARS-COV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020 

Jul 14 [Epub ahead of print].  

20. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al. Virological 

assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–9. 

https://doi.org/10.1038/s41586-020-2196-x 

21. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al.; the 

Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and 

outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 

2020;323:2052–9. https://doi.org/10.1001/jama.2020.6775 

22. Andrieu C, Thoms J. A tutorial on adaptive MCMC. Stat Comput. 2008;18:343–73. 

https://doi.org/10.1007/s11222-008-9110-y 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32422201&dopt=Abstract
https://doi.org/10.1016/S1473-3099(20)30314-5
https://doi.org/10.1016/S1473-3099(20)30314-5
https://doi.org/10.1056/NEJMc2013020
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32530584&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32831176&dopt=Abstract
https://doi.org/10.7554/eLife.58699
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32822290&dopt=Abstract
https://doi.org/10.3201/eid2611.201165
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32289214&dopt=Abstract
https://doi.org/10.1056/NEJMoa2006100
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1001/jama.2020.6775
https://doi.org/10.1007/s11222-008-9110-y


 

Page 28 of 35 

23. Burnham KP, Anderson DR. Multimodal inference: understanding AIC and BIC in model selection. 

Sociol Methods Res. 2004;33:261–304. https://doi.org/10.1177/0049124104268644 

24. Lin YT, Kim H, Doering CR. Demographic stochasticity and evolution of dispersion I. Spatially 

homogeneous environments. J Math Biol. 2015;70:647–78. PubMed 

https://doi.org/10.1007/s00285-014-0776-9 

25. Lin YT, Feng S, Hlavacek WS. Scaling methods for accelerating kinetic Monte Carlo simulations of 

chemical reaction networks. J Chem Phys. 2019;150:244101. PubMed 

https://doi.org/10.1063/1.5096774 

26. Chen DG, Chen X, Chen JK. Reconstructing and forecasting the COVID-19 epidemic in the United 

States using a 5-parameter logistic growth model. Glob Health Res Policy. 2020;5:25. PubMed 

https://doi.org/10.1186/s41256-020-00152-5 

27. Moreau VH. Forecast predictions for the COVID-19 pandemic in Brazil by statistical modeling using 

the Weibull distribution for daily new cases and deaths. Braz J Microbiol. 2020;51:1109–15. 

PubMed https://doi.org/10.1007/s42770-020-00331-z 

28. Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, et al. Short-term forecasts of the 

COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. J Clin Med. 

2020;9:596. PubMed https://doi.org/10.3390/jcm9020596 

29. Rypdal K, Rypdal M. A parsimonious description and cross-country analysis of COVID-19 epidemic 

curves. Int J Environ Res Public Health. 2020;17:E6487. PubMed 

https://doi.org/10.3390/ijerph17186487 

30. Wu K, Darcet D, Wang Q, Sornette D. Generalized logistic growth modeling of the COVID-19 

outbreak: comparing the dynamics in the 29 provinces in China and in the rest of the world. 

Nonlinear Dyn. 2020;101:1–21. PubMed https://doi.org/10.1007/s11071-020-05862-6 

31. Xu J, Cheng Y, Yuan X, Li WV, Zhang L. Trends and prediction in daily incidence of novel 

coronavirus infection in China, Hubei Province and Wuhan City: an application of Farr’s law. 

Am J Transl Res. 2020;12:1355–61. PubMed https://doi.org/10.1101/2020.02.19.20025148 

32. Brookmeyer R, Gail MH. Minimum size of the acquired immunodeficiency syndrome (AIDS) 

epidemic in the United States. Lancet. 1986;2:1320–2. PubMed https://doi.org/10.1016/S0140-

6736(86)91444-3 

33. Brookmeyer R. Reconstruction and future trends of the AIDS epidemic in the United States. Science. 

1991;253:37–42. PubMed https://doi.org/10.1126/science.2063206 

https://doi.org/10.1177/0049124104268644
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24682331&dopt=Abstract
https://doi.org/10.1007/s00285-014-0776-9
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31255063&dopt=Abstract
https://doi.org/10.1063/1.5096774
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32435695&dopt=Abstract
https://doi.org/10.1186/s41256-020-00152-5
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32809115&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32809115&dopt=Abstract
https://doi.org/10.1007/s42770-020-00331-z
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32098289&dopt=Abstract
https://doi.org/10.3390/jcm9020596
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32899971&dopt=Abstract
https://doi.org/10.3390/ijerph17186487
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32836822&dopt=Abstract
https://doi.org/10.1007/s11071-020-05862-6
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32355547&dopt=Abstract
https://doi.org/10.1101/2020.02.19.20025148
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2878184&dopt=Abstract
https://doi.org/10.1016/S0140-6736(86)91444-3
https://doi.org/10.1016/S0140-6736(86)91444-3
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2063206&dopt=Abstract
https://doi.org/10.1126/science.2063206


 

Page 29 of 35 

34. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al.; Washington State 2019-

nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl 

J Med. 2020;382:929–36. https://doi.org/10.1056/NEJMoa2001191 

35. The New York Times. Coronavirus (Covid-19) data in the United States. 2020 [cited 2020 Jul 1]. 

https://github.com/nytimes/covid-19-data 

 

Appendix Table 1. Strength-of-evidence comparison of compartmental models for daily new case counts of coronavirus disease in 
various metropolitan statistical areas, United States, January 21–June 26, 2020 
MSA ΔAIC* ΔBIC* 𝑝𝑝0𝑛𝑛=0 (95% CI)† 𝑝𝑝0𝑛𝑛=1 (95% CI)† 𝑝𝑝1𝑛𝑛=1 (95% CI)† 
New York City, NY 17 8.6 0.88 (0.85–0.90) 0.87 (0.80–0.89) 0.36 (0.11–0.83) 
Los Angeles, CA −6.5 −15 0.45 (0.38–0.45) 0.47 (0.42–0.80) 0.38 (0.33–0.97) 
Chicago, IL 18 9.5 0.57 (0.46–0.61) 0.52 (0.46–0.75) 0.25 (0.03–0.68) 
Dallas, TX 18 9.4 0.52 (0.41–0.52) 0.59 (0.49–0.77) 0.41 (0.33–0.60) 
Houston, TX 50 42 0.39 (0.34–0.45) 0.49 (0.39–0.79) 0.30 (0.20–0.56) 
Washington, DC 1.0 −7.5 0.39 (0.30–0.47) 0.77 (0.71–0.80) 0.68 (0.63–0.76) 
Miami, FL 75 67 0.51 (0.46–0.57) 0.92 (0.81–0.97) 0.69 (0.61–0.80) 
Philadelphia, PA 12 3.7 0.65 (0.57–0.69) 0.55 (0.49–0.81) 0.22 (0.03–0.69) 
Atlanta, GA 9.9 1.5 0.54 (0.41–0.52) 0.58 (0.44–0.78) 0.29 (0.06–0.63) 
Phoenix, AZ 66 58 0.43 (0.37–0.49) 0.55 (0.43–0.73) 0.34 (0.26–0.54) 
Boston, MA −31 −39 0.36 (0.29–0.37) 0.80 (0.69–0.85) 0.18 (0.06–0.97) 
San Francisco, CA 20 12 0.32 (0.29–0.35) 0.36 (0.34–0.74) 0.17 (0.07–0.63) 
Riverside, CA 3.8 −4.7 0.41 (0.36–0.46) 0.43 (0.38–0.74) 0.34 (0.03–0.48) 
Detroit, MI 5.9 −2.6 0.75 (0.60–0.78) 0.80 (0.64–0.92) 0.93 (0.14–0.97) 
Seattle, WA 55 46 0.87 (0.75–0.90) 0.82 (0.76–0.85) 0.59 (0.48–0.68) 
*ΔAIC ≡ AIC𝑛𝑛=0 − AIC𝑛𝑛=1 and ΔBIC ≡ BIC𝑛𝑛=0 − BIC𝑛𝑛=1, where AIC𝑛𝑛=0 and AIC𝑛𝑛=1 are the AIC values calculated for the 𝑛𝑛 = 0 and 𝑛𝑛 = 1 versions of 

the compartmental model; BIC𝑛𝑛=0 and BIC𝑛𝑛=1 are the BIC values calculated for the 𝑛𝑛 = 0 and 𝑛𝑛 = 1 versions of the compartmental model (S. Anderson, 
unpub. data, https://www.medrxiv.org/content/10.1101/2020.04.17.20070086v1). CI, credible interval; AIC, Akaike information criterion; BIC, Bayesian 
information criterion. 
†The first number in each entry in this column is the maximum a posteriori estimate. 

 
 
 
 
 
Appendix Table 2. Parameters of the curve-fitting model and the associated-likelihood function used in predictive inference for daily 
new cases of coronavirus disease in the New York, NY metropolitan statistical area, January 21–June 21, 2020 

Parameter Estimate Definition 
𝑁𝑁 470,000† Population size 
𝑡𝑡0 35 d† Start of COVID-19 transmission 
𝑘𝑘 6.6† Shape parameter of Γ(𝑘𝑘,𝜃𝜃) 
𝜃𝜃 7.9† Scale parameter of Γ(𝑘𝑘, 𝜃𝜃) 
𝜇𝜇𝐿𝐿𝐿𝐿 1.6‡ 𝜇𝜇-parameter of log-normal distribution 
𝜎𝜎𝐿𝐿𝐿𝐿 0.42‡ 𝜎𝜎-parameter of log-normal distribution 
𝑝𝑝 Constrained§ Probability parameter of NB(𝑟𝑟, 𝑝𝑝) 
𝑟𝑟 4.4† Dispersal parameter of NB(𝑟𝑟,𝑝𝑝) 

*𝑁𝑁, 𝑡𝑡0, 𝑘𝑘, 𝜃𝜃, 𝜇𝜇𝐿𝐿𝐿𝐿, and 𝜎𝜎𝐿𝐿𝐿𝐿  are parameters of the curve-fitting model; 𝑝𝑝 and 𝑟𝑟 are parameters of the associated-likelihood function. 
†Estimates of the adjustable parameters (𝑁𝑁, 𝑡𝑡0, 𝑘𝑘, 𝜃𝜃, and 𝑟𝑟) are region-specific and inference-time-dependent. Estimations made using data from 
the GitHub repository maintained by The New York Times newspaper (35). Time 𝑡𝑡 = 0 corresponds to midnight on January 21, 2020. 
‡Estimates of the fixed parameters 𝜇𝜇𝐿𝐿𝐿𝐿 and 𝜎𝜎𝐿𝐿𝐿𝐿 are those of Lauer et al. (1). These parameter estimates define a log-normal distribution that 
reproduces the empirical distribution of waiting times for the onset of symptoms after infection with severe acute respiratory syndrome coronavirus 
2. 
§The value of 𝑝𝑝 is constrained (i.e., its reporting-time-dependent value is determined by a formula [Appendix equation 26]). 
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Appendix Figure 1. Detailed diagram of the populations and processes considered in the mechanistic 

compartmental model for daily new coronavirus disease cases during regional epidemics, United States, 

2020. The model accounts for susceptible persons (𝑆𝑆), exposed persons without symptoms in the 

incubation phase of disease (𝐸𝐸), asymptomatic persons in the immune clearance phase of disease (𝐴𝐴), 

mildly ill symptomatic persons (𝐼𝐼), severely ill persons in hospital or at home (𝐻𝐻), recovered persons (𝑅𝑅), 

and deceased persons (𝐷𝐷). The model also accounts for social distancing through mixing (i.e., not 

practicing social distancing) denoted by M and protected (i.e., practicing social distancing) subpopulations 

denoted by P subscripts; quarantined subpopulations denoted by a Q subscript; and self-isolation spurred 

by symptom awareness. We considered persons who are self-isolating because of symptoms to be 

members of the 𝐼𝐼𝑄𝑄 population. The incubation period is divided into 5 stages (𝐸𝐸1–𝐸𝐸5), which enables the 

model to reproduce an empirically determined (nonexponential) Erlang distribution of waiting times for the 

onset of symptoms after infection (1). The exposed population comprises presymptomatic and 

asymptomatic persons. The 𝐴𝐴 populations consist of asymptomatic persons in the immune clearance 

phase. The gray background indicates the populations that contribute to disease transmission. An 

auxiliary measurement model (equations 23 and 24 in the Appendix) accounts for imperfect detection and 

reporting of new cases. Only symptomatic cases are assumed to be detectable in surveillance testing. 

Labels indicate the parameters and variables that affect the rates of the processes represented by the 

arrows. Red indicates the mixing population; yellow indicates the protected population; green indicates 

the quarantined population; white indicates the recovered population; black indicates the deceased 

population. 
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Appendix Figure 2. Potential transmission effects of a theoretical mass gathering on May 30, 2020 

during regional coronavirus disease epidemics in the (A) New York City, NY and (B) Phoenix, AZ 

metropolitan statistical areas. Color bands indicate credible intervals for predictions of daily case reports. 

Crosses indicate observed data. 

 

 

Appendix Figure 3. Predictive inferences conditioned on the compartmental model of daily new cases of 

coronavirus disease in 5 metropolitan statistical areas United States, 2020. A–E) Inferences of model with 

1 initial social distancing period for A) Houston, TX; B) Miami, FL; C) Phoenix, AZ; D) San Francisco, CA; 

E) Seattle, WA. F–J) Inferences of model with 2 distinct social distancing periods for F) Houston, TX; G) 

Miami, FL; H) Phoenix, AZ; I) San Francisco, CA; J) Seattle, WA. Color bands indicate credible intervals 

for predictions of daily case reports. Crosses indicate observed data. 
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Appendix Figure 4. Comparison of next-day new case predictions and the corresponding empirical 

reported case counts of coronavirus disease in 5 metropolitan statistical areas, United States, 2020. A) 

Houston, TX; B) Miami, FL; C) San Francisco, CA; D) Seattle, WA; E) Los Angeles, CA; F) Chicago, IL; 

G) Dallas, TX; and H) Washington, DC. Crosses indicate observed daily case reports. Orange line 

indicates 97.5% probability percentile. Yellow arrows mark upward-trending rare events. Red arrows mark 

upward-trending anomalies. 
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Appendix Figure 5. Out-of-sample validation of forecasting accuracy for region-specific compartmental 

models of daily new cases of coronavirus disease, United Sates, July 14–September 9, 2020. Empirical 

coverage was calculated for predicted detection of new cases 1, 4, and 7 days into the future. The dotted 

line indicates the coverage expected for unbiased prediction. 

 

 

Appendix Figure 6. Comparison of forecasting accuracy of deterministic and stochastic versions of the 

compartmental model for daily new cases of coronavirus disease in the New York, NY metropolitan 

statistical area, United States, 2020. A) Results conditioned on the deterministic (i.e., ordinary differential 

equation) compartmental model. B, C) Results conditioned on a comparable stochastic differential 

equation model. D) In-sample validation results. Crosses indicate observed data. Colored bands indicate 

credible intervals of predictive posteriors. NB, observation noise; ODE, ordinary differential equation; 

SDE, stochastic differential equation. 
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Appendix Figure 7. Comparison of forecasting accuracy of deterministic and stochastic versions of the 

compartmental model for daily new cases of coronavirus disease in the Miami, FL metropolitan statistical 

area, United States, 2020. A) Results conditioned on the deterministic (i.e., ordinary differential equation) 

compartmental model. B, C) Results conditioned on a comparable stochastic differential equation model. 

D) In-sample validation results. Crosses indicate observed data. Colored bands indicate credible intervals 

of predictive posteriors. NB, observation noise; ODE, ordinary differential equation; SDE, stochastic 

differential equation. 

 

 

 

Appendix Figure 8. Illustration of shapes produced by fitting function to capture trends in regional 

coronavirus epidemic curves, United States, 2020.  
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Appendix Figure 9. Bayesian predictive inferences for the 15 most populous metropolitan statistical 

areas, United States, 2020. Predictions conditioned on the curve-fitting model for A) New York City, NY; 

B) Los Angeles, CA; C) Chicago, IL; D) Dallas, TX; E) Houston, TX; F) Washington, DC; G) Miami, FL; H) 

Philadelphia; I) Atlanta, GA; J) Phoenix, AZ; K) Boston, MA; L) San Francisco, CA; M) Riverside, CA; N) 

Detroit, MI; and O) Seattle, WA. Color bands indicate credible intervals for predictions of daily case 

reports. Crosses indicate observed data. 
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