Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 8—August 2022

Zoonotic Threat of G4 Genotype Eurasian Avian-Like Swine Influenza A(H1N1) Viruses, China, 2020

Min Gu1, Kaibiao Chen1, Zhichuang Ge, Jun Jiao, Tianyu Cai, Suhan Liu, Xiaoquan Wang, Xinan Jiao, Daxin Peng, and Xiufan LiuComments to Author 
Author affiliations: Yangzhou University, Yangzhou, China (M. Gu, K. Chen, Z. Ge, J. Jiao, T. Cai, S. Liu, X. Wang, X. Jiao, D. Peng, X. Liu); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou (M. Gu, X. Wang, X. Jiao, D. Peng, X. Liu)

Main Article

Table 2

Virus replication of 2 G4 Eurasian avian-like H1N1 swine isolates from pigs in China in vitro and in vivo*

Virus strain log10 EID50/0.1 mL log10 TCID50/0.1 mL Virus growth in MDCK cells, mean titer ±SD, log10 TCID50/0.1 mL†
Virus replication in infected mice,
mean titer +SD, log10 copies/μL‡
3 dpi
5 dpi
12 hpi 24 hpi 36 hpi 48 hpi 60 hpi Lung Turb Brain Lung Turb Brain
HD11 9.5 7.5 3.872§ +0.645 5.041 +0.219 7.000¶ +0.441 5.556# +0.096 5.667** +0.000 5.679# +0.355 4.295** +0.181 2.495 +0.318 3.828 +1.484 2.385 +0.219 2.703 +0.661
HD21 9.375 5.769 3.055 +0.481 4.389 +0.096 4.556 +0.096 4.556 +0.096 4.444 +0.096 3.894 +0.195 2.008 +0.988 1.667 +0.537 4.550 +0.53 2.334 +0.221 2.692 +0.132

*We conducted 2-way analysis of variance in Prism software version 8 (GraphPad, for virus titer comparison between HD11 and HD21 groups in each time point in cells or each tissue of the same sampling day in mice. dpi, days postinfection; EID50, 50% egg infectious dose; HD11, A/swine/Jiangsu/HD11/2020(H1N1); HD21, A/swine/Anhui/HD21/2020(H1N1); hpi, hours postinfection; TCID50, 50% tissue culture infectious dose (determined in MDCK cells); turb, turbinate. †MDCK monolayers were infected with HD11 and HD21 at a multiplicity of infection (MOI) of 0.1. The virus titers of cell supernatants collected at different time points of 12, 24, 36, 48, and 60 h postinfection were determined via the TCID50 assay in MDCK cells. ‡Three 6-week-old BALB/c mice per group challenged with 106.0 EID50 virus in 50 μL volume were euthanized to collect tissue samples including the lung, turbinate, and brain for virus titration on 3 and 5 d postinoculation. The viral load expressed with virus copies in tissue homogenates was measured through the real-time quantitative reverse transcription PCR method as described (12). §p<0.05. ¶p<0.0001. #p<0.01. **p<0.001.

Main Article

  1. Crisci  E, Mussá  T, Fraile  L, Montoya  M. Review: influenza virus in pigs. Mol Immunol. 2013;55:20011. DOIPubMedGoogle Scholar
  2. Nelson  MI, Vincent  AL. Reverse zoonosis of influenza to swine: new perspectives on the human-animal interface. Trends Microbiol. 2015;23:14253. DOIPubMedGoogle Scholar
  3. Chastagner  A, Enouf  V, Peroz  D, Hervé  S, Lucas  P, Quéguiner  S, et al. Bidirectional human–swine transmission of seasonal influenza A(H1N1)pdm09 virus in pig herd, France, 2018. Emerg Infect Dis. 2019;25:19403. DOIPubMedGoogle Scholar
  4. Deng  YM, Wong  FYK, Spirason  N, Kaye  M, Beazley  R, Grau  MLL, et al. Locally acquired human infection with swine-origin influenza A(H3N2) variant virus, Australia, 2018. Emerg Infect Dis. 2020;26:1437. DOIPubMedGoogle Scholar
  5. Anderson  TK, Chang  J, Arendsee  ZW, Venkatesh  D, Souza  CK, Kimble  JB, et al. Swine influenza A viruses and the tangled relationship with humans. Cold Spring Harb Perspect Med. 2021;11:a038737. DOIPubMedGoogle Scholar
  6. Feng  Z, Zhu  W, Yang  L, Liu  J, Zhou  L, Wang  D, et al. Epidemiology and genotypic diversity of Eurasian avian-like H1N1 swine influenza viruses in China. Virol Sin. 2021;36:4351. DOIPubMedGoogle Scholar
  7. Li  X, Guo  L, Liu  C, Cheng  Y, Kong  M, Yang  L, et al. Human infection with a novel reassortant Eurasian-avian lineage swine H1N1 virus in northern China. Emerg Microbes Infect. 2019;8:153545. DOIPubMedGoogle Scholar
  8. Li  Z, Zhao  X, Huang  W, Yang  L, Cheng  Y, Tan  M, et al. Etiological characteristics of the first human infection with the G4 genotype Eurasian avian⁃like H1N1 swine influenza virus in Yunnan province, China [in Chinese]. Chin J Virol. 2022;38:2907.
  9. World Health Organization. Influenza at the human-animal interface summary and assessment, 1 October 2021. 2021 [cited 2021 Dec 14].
  10. Yang  H, Chen  Y, Qiao  C, He  X, Zhou  H, Sun  Y, et al. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proc Natl Acad Sci U S A. 2016;113:3927. DOIPubMedGoogle Scholar
  11. Sun  H, Xiao  Y, Liu  J, Wang  D, Li  F, Wang  C, et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc Natl Acad Sci U S A. 2020;117:1720410. DOIPubMedGoogle Scholar
  12. Chen  K, Kong  M, Liu  J, Jiao  J, Zeng  Z, Shi  L, et al. Rapid differential detection of subtype H1 and H3 swine influenza viruses using a TaqMan-MGB-based duplex one-step real-time RT-PCR assay. Arch Virol. 2021;166:221724. DOIPubMedGoogle Scholar
  13. Yamada  S, Suzuki  Y, Suzuki  T, Le  MQ, Nidom  CA, Sakai-Tagawa  Y, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature. 2006;444:37882. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: June 23, 2022
Page updated: July 20, 2022
Page reviewed: July 20, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.