
Neisseria meningitidis causes invasive meningo-
coccal diseases (IMDs), such as meningitis and 

septicemia. N. meningitidis is classified into 12 de-
fined serogroups; however, most IMDs are associ-
ated with the serogroups A, B, C, W, X, and Y (1). 
Serogrouping is critical for IMD control because me-
ningococcal vaccines have serogroup-specific effects 
(2). Whole-genome sequencing (WGS)–based typ-
ing, such as high-resolution core genome multilocus 
sequence typing (MLST), is the most powerful meth-
od for analyzing meningococcal isolates. However,  

standard MLST, which identifies sequence types 
(STs) of isolates according to the unique allelic 
profiles of 7 housekeeping genes, is still applied to 
meningococcal epidemiology studies because the 
most invasive isolates belong to a limited number 
of clonal complexes (CCs). For example, ST11 and 
the locus variants comprising CC11 meningococci 
are well-known hypervirulent N. meningitidis strains 
that have caused many pandemics (3), including 
IMD outbreaks that predominately occurred among 
men who have sex with men (MSM) (4–9).

N. gonorrhoeae is also a human pathogen capable 
of infecting the urethra, cervix, rectum, and orophar-
ynx. Most gonococcal infections manifest clinically 
as urethritis in men or cervicitis in women, both of 
which are sexually transmitted infections (STI). Me-
ningococcus and gonococcus are generally regarded 
as distinct taxa that cause specific diseases; however, 
recent findings suggest a greater overlap than was 
originally reported. N. gonorrhoeae is rarely identified 
as a causative agent of systemic infection; N. menin-
gitidis has been reported to cause STIs, such as ure-
thritis. An outbreak of meningococcal urethritis pre-
dominantly among MSM was reported in multiple 
cities in the United States (10). Causative agents were 
identified as CC11 N. meningitidis isolates with sev-
eral unique features and classified as US N. meningiti-
dis urethritis clade (US_NmUC) (11–14). The capsular 
polysaccharide (cps) locus in US_NmUC meningo-
cocci is disrupted by insertion sequence (IS) 1301 that 
replaced ccsA, cssB, and cssC genes and part of the csc 
gene causing loss of encapsulation (12). That genetic 
mutation also caused the loss of wild-type lipooligo-
saccharide sialylation, which appeared to increase 
mucosal surface adherence (15). Moreover, the fac-
tor H binding protein (fHbp), which binds to human 
factor H and inhibits the alternative complement ac-
tivation pathway in the human immune system (16), 
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Neisseria meningitidis causes invasive meningococcal 
diseases and has also been identified as a causative 
agent of sexually transmitted infections, including ure-
thritis. Unencapsulated sequence type 11 meningo-
cocci containing the gonococcal aniA-norB locus and 
belonging to the United States N. meningitidis urethri-
tis clade (US_NmUC) are causative agents of urethral 
infections in the United States, predominantly among 
men who have sex with men. We identified 2 subtypes 
of unencapsulated sequence type 11 meningococci in 
Japan that were phylogenetically close to US_NmUC, 
designated as the Japan N. meningitidis urethritis clade 
(J_NmUC). The subtypes were characterized by PCR, 
serologic testing, and whole-genome sequencing. Our 
study suggests that an ancestor of US_NmUC and J_
NmUS urethritis-associated meningococci is disseminat-
ed worldwide. Global monitoring of urethritis-associated 
N. meningitidis isolates should be performed to further 
characterize microbiologic and epidemiologic character-
istics of urethritis clade meningococci.
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was highly expressed in US_NmUC N. meningitidis 
isolates and might promote evasion from immune re-
sponses in the human urogenital tract (12). The most 
unique feature of US_NmUC meningococci is their 
acquisition of the N. gonorrhoeae denitrification appa-
ratus that comprises gonococcal alleles encoding ni-
trate reductase AniA and nitric oxide reductase NorB 
and the intergenic promoter region, which confers 
survival in the urogenital tract (12,17).

Most US_NmUC isolates have been recovered 
from patients with urethritis in the United States. 
However, 2 US_NmUC meningococci isolates were 
identified in 2019 in rectal swab samples from MSM 
in the United Kingdom (18), and 19 US_NmUC me-
ningococci were isolated in Vietnam in 2019 and 2020 
(19). US_NmUC meningococci have not yet been re-
ported in other countries. We report the genomic and 
phenotypic features of 3 unencapsulated ST11 ure-
thritis-associated N. meningitidis strains isolated in 
Japan that were phylogenetically close to US_NmUC 
but classified as novel urethritis meningococcus 
clade subtypes.

Methods

N. meningitidis Isolates
Although IMDs are legally notifiable diseases in 
Japan, STIs caused by N. meningitidis are not. In 
Japan, meningococcal isolates from patients with 
STIs are typically collected as part of the country-
wide gonococcal surveillance program (headed by 
M.Y.). Urethral swab samples from male patients 
suspected of having urethritis and cervical swab 
samples from female patients suspected of having 
cervicitis were sent to Sapporo Medical University 
from ≈100 clinics across Japan. We isolated strains 
by selective growth on Thayer-Martin medium 
and analyzed those isolates by using Biotyper ma-
trix-assisted/laser desorption time-of-flight mass 
spectrometry (Beckman Coulter, https://www.
beckmancoulter.com) and commercially available 
mass spectrometry profiles to identify species. We 
collected >1,000 gonococcal isolates annually and 
isolated ≈10 N. meningitidis strains under the gono-
coccal surveillance program, in which no misiden-
tification of N. meningitidis as N. gonorrhoeae has oc-
curred. We characterized 3 N. meningitidis isolates 
at the National Institute of Infectious Diseases by 
using serologic and genetic analyses.

Typing and Antimicrobial Drug Susceptibility Tests
We performed serogrouping by using PCR (20) and 
slide agglutination tests with meningococcal rabbit 

antiserum (Remel, http://www.remel.com, or Difco/
Becton Dickinson, https://www.bd.com) and a com-
mercial latex agglutination kit (Pastorex Meningitis 
assay; Bio-Rad Laboratories, https://www.bio-rad.
com). We conducted MLST by using the standard 
method (21). We performed antimicrobial drug sus-
ceptibility tests by using E-tests (bioMérieux, https://
www.biomerieux.com) and Mueller-Hinton agar 
with 5% sheep blood (Becton Dickinson), which we 
interpreted according to the Clinical and Laboratory 
Standards Institute criteria for agar dilution, as previ-
ously described (22).

WGS, Genome Assembly, and Phylogenetic Analysis
We extracted genomic DNA by using the MagMAX 
DNA Multi-Sample Ultra 2.0 Kit, which we then 
purified by using the KingFisher Duo Prime Purifi-
cation System and measured concentrations by us-
ing a Qubit dsDNA HS assay kit (all from Thermo 
Fisher Scientific, https://www.thermofisher.com). 
We prepared genomic libraries for short read se-
quencing by using the QIAseq FX DNA Library 
Kit (QIAGEN, https://www.qiagen.com) and se-
quenced 300-bp paired-end reads on a MiSeq in-
strument (Illumina, https://www.illumina.com). 
For long-read sequencing on a MinION sequencer 
(Oxford Nanopore Technologies, https://nano-
poretech.com), we prepared genomic libraries by 
using a Rapid Barcoding Kit (Oxford Nanopore 
Technologies) and sequenced them by using an 
R9.4.1 flow cell. We basecalled raw data by using 
Guppy 6.5.7 (23) and removed adaptors before as-
sembly by using Porechop 0.2.3 (https://github.
com/rrwick/Porechop). We generated draft ge-
nome sequences for both long and short reads by 
using Unicycler version 0.5.0 in conservative mode 
(24) and performed annotations of complete ge-
nomes and genome assemblies by using the DDBJ 
Fast Annotation and Submission Tool (https://
dfast.ddbj.nig.ac.jp) (25). We used draft genome as-
semblies for PorA and FetA typing and determin-
ing the Meningococcal Deduced Vaccine Antigen 
Reactivity Index through PubMLST (https://www.
pubmlst.org). We performed phylogenetic analyses 
of N. meningitidis from urethritis patients by using 
26 publicly available genomes and constructed core 
gene alignments by using Roary version 3.12.0 and 
the -s and -e–mafft options (26), which were subject 
to SNP-sites version 2.5.1 (27) to extract single-nu-
cleotide variants. We constructed the phylogenetic 
tree by using IQ-TREE version 2.0.3 (http://www.
iqtree.org) with 1,000 ultrafast bootstrap replicates 
and visualized the tree by using iTOL (28).
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Repositories
We deposited the short reads sequence data for 
NIID835, NIID836, and NIID838 in the DDBJ Se-
quence Read Archive (https://www.ddbj.nig.
ac.jp) under accession nos. DRR494404 (NIID835), 
DRR494405 (NIID836), and DRR494406 (NIID838) 
and in the PubMLST database under nos. 135430 
(NIID835), 135431 (NIID836), and 135432 (NIID838). 
The annotated complete genome assemblies of 
NIID835, NIID836, and NIID838 strains are also 
available in the GenBank, EMBL (https://www.
ebi.ac.uk), and DDBJ databases under accession 
nos. AP028680 (NIID835), AP028681 and AP028682 
(NIID836), and AP028683 (NIID838).

Results
The 3 J_NmUC N. meningitidis strains (NIID835, 
NIID836, and NIID838) were isolated from 3 men 
with urethritis that developed 4–5 days after con-
tact with commercial sex workers for oral sexu-
al services (Appendix 1 Table, https://wwwnc.
cdc.gov/EID/article/29/11/23-1082-App1.xlsx).  
Although N. meningitidis strains from patients 
with urethritis in Japan are typically classified as 
ST11026, which is also isolated from healthy carri-
ers (29), or ST23, which is also isolated from IMD 
patients and healthy carriers (30), we identified all 
3 J_NmUC N. meningitidis strains as ST11 (Appen-
dix 1 Table). To further characterize the 3 J_NmUC 
N. meningitidis isolates as urethritis clade meningo-
cocci, we performed WGS, phylogenetic, and sero-
logic analyses.

aniA-norB Locus
We conducted phylogenetic analysis of the 3.5-kb 
aniA-norB gene sequence (Appendix 2 Figure 1, 
https://wwwnc.cdc.gov/EID/article/29/11/23-
1082-App2.pdf) for 3 J_NmUC N. meningitidis iso-
lates from Japan, 2 N. meningitidis US_NmUC iso-
lates, N. gonorrhoeae FA1090 (GenBank accession no. 
NC_002946.2), N. meningitidis MC58 (31), and 6 N. 
meningitidis serogroup C isolates from IMD patients 
in United States that were genetically very close to 
US_NmUC (32) (Figure 1). Moreover, we included 
3 ST23 N. meningitidis isolates (NM001, NM003, and 
NIID574) from Japan harboring the gonococcal aniA-
norB locus (30), designated as J_NmUC-II (Figure 1). 
The aniA-norB locus in the 3 ST11 J_NmUC isolates 
was 100% identical to that in US_NmUC meningo-
cocci (12,17), indicating the aniA-norB locus in the 3 J_
NmUC strains was of gonococcal origin. In the 3 ST11 
J_NmUC and 3 J_NmUC-II isolates, the aniA-norB lo-
cus was located between gpxA and NMB1624 genes 
(Appendix 2 Figure 1), which was identical to that in 
US_NmUC N. meningitidis strains (12). Collectively, 
those results indicated that the 3 ST11 J_NmUC iso-
lates acquired the gonococcal aniA-norB locus, similar 
to US_NmUC meningococci.

Serogrouping and cps Locus Analysis
Although we initially identified the 3 ST11 J_NmUC 
N. meningitidis strains as serogroup C meningococci 
(MenC) by PCR (20), the strains were agglutination 
negative when we tested with serogroup C–specific an-
tiserum. To clarify this discrepancy, we characterized 
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Figure 1. Phylogenetic analysis of 
the 3.5-kb aniA-norB gene locus 
of Neisseria spp. isolates in study 
detecting novel US N. meningitidis 
urethritis clade subtypes in 
Japan. Tree was constructed by 
using the unweighted pair group 
method with arithmetic mean and 
1,000 bootstrap replicates. The 
gonococcal aniA-norB locus was 
derived from N. gonorrhoeae 
FA1090 (GenBank accession 
no. NC_002946.2); all others 
are from N. meningitidis isolates. 
Scale bar indicates nucleotide 
substitutions per site. IMD, invasive 
meningococcal disease; Nm, N. 
meningitidis, ST, sequence type; 
STI, sexually transmitted infection.
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the cps gene locus (Figure 2). In NIID835 and 
NIID838 isolates, cssA, cssB, and cssC genes, and part 
of the csc gene (region A) were deleted and replaced 
with IS1301, but the ctrABCD gene cluster (region C) 
was also deleted. In contrast to 2 copies of IS1301 in 
US_NmUC isolates (12), only 1 copy of IS1301 was 
found in the cps locus of NIID835 and NIID838 iso-
lates. In the NIID836 J_NmUC isolate, deletions of 
cssA, cssB, cssC, csc genes were identical to those in 
NIID835 and NIID838, but the ctrABCD gene cluster 
remained, containing the pylA, gltS, lipA, and lipB 
genes, which are typically proximal to the csc and 
cssE genes. Furthermore, 2 copies of the rfbC, rfbA, 
and rfbB gene cluster were identified in the NIID836 
J_NmUC isolate; only 1 copy was found in NIID835 
and NIID838 isolates. Although the cps locus in the 
3 J_NmUC meningococcal strains were not identical 
to that in US_NmUC meningococci, the J_NmUC 
meningococci were genotypically nongroupable. 
All of the genetic features within the cps and aniA-
norB loci confirmed that the 3 nongroupable ST11 
J_NmUC meningococci were classified into the ure-
thritis clade.

fHbp Locus
In US_NmUC meningococci, fHbp was speculated 
to be highly expressed because the fHbp promoter se-
quence belonged to high fHbp–expressing promoter 
clade I (33). In the 3 ST11 J_NmUC N. meningitidis 
isolates, the fHbp promoter sequence, fHbp peptide, 
and fHbp allele were identical to those in US_NmUC 
meningococci strains (Appendix 2 Figure 2), suggest-
ing fHbp might also be highly expressed in J_NmUC 
meningococci (12).

Phylogenetic Analysis by Using WGS
To gain insights into the origin of J_NmUC menin-
gococci, we performed phylogenetic analysis by us-
ing WGS to compare 9 ST11 IMD isolates from Japan 
(29), 1 STI isolate (NmJP12–1) (30), and 7 IMD MenC 
isolates from the United States that were genetically 
close to US_NmUC (32) (Figure 3). ST23 J_NmUC-II, 
ST11 serogroup W meningococci SK001 (NmJP12–1), 
8 IMD MenC, and 5 STI MenC (30) isolates were ge-
netically separate from J_NmUC and US_NmUC me-
ningococci; 7 US IMD MenC that were close to US_
NmUC (32) were also genetically close to J_NmUC. 
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Figure 2. Organization of genes within the cps locus of Neisseria meningitidis isolates in study of detection of novel US N. meningitidis 
urethritis clade subtypes in Japan. N. meningitidis isolates from Japan (NIID835, NIID836, NIID838) and United States (US_NmUC) were 
compared with N. meningitidis strain FAM18 (GenBank accession no. AM421808). Open red arrows indicate the cssA, cssB, cssC, csc, 
and cssE genes in region A responsible for capsule synthesis and open blue arrows the ctrD, ctrC, ctrB, and ctrA genes (in that order) 
in region C responsible for capsule transport. Insertion sequence IS1301 is indicated. Open reading frames identical to NMC0044 (solid 
red), NMC0049 (gray), NMC0068 (yellow), NMC0071 (green), NMC0073 (pink), and NMC0075 (blue) in FAM18 are shown for each 
isolate. Partial deletion is indicated for the csc gene (csc′). The cps locus for US_NmUC had 2 configurations created by a ≈20-kb genome 
inversion between 2 IS1301 sequences (designated as A and B). Gene alignments in the region between the 2 IS1301 sequences have 
been omitted and are indicated by the dashed line. Although ctrD, ctrC, ctrB, and ctrA genes were shown to be proximal to dnaJ (12), 
contigs containing the dnaJ-rfbC, rfbA, and rfbB genes and the ctrD, ctrC, ctrB, and ctrA genes (shown on the left side of A and B), as well 
as 2 IS1301 and pykA genes (shown on the right side of A and B), were not connected by our analysis because of the absence of US_
NmUC long-read sequences. Therefore, unidentified connections of the 2 contigs are indicated by a dotted line.
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However, J_NmUC strains were the phylogenetically 
closest to US_NmUC, eliminating the possibility that 
J_NmUC was originally derived from MenC strains 
in Japan.

Susceptibility to Antimicrobial Drugs
Antimicrobial resistance in N. meningitidis is consid-
ered to be acquired by transmission of genetic ma-
terial from N. gonorrhoeae, such as the gonococcal 
aniA-norB locus (14). However, US_NmUC menin-
gococci isolated in the United States were susceptible 
to the third-generation cephalosporin ceftriaxone, 
ciprofloxacin, and rifampin, whereas ≈75%–85% of 
US_NmUC meningococci were nonsusceptible (in-
termediate susceptibility) to penicillin G (34,35). The 
3 J_NmUC meningococci were susceptible to most 
antimicrobial drugs tested, except the NIID836 strain 
had intermediate susceptibility to penicillin G, simi-
lar to US_NmUC meningococci (34,35). Those results 
suggest that genetic material related to antimicrobi-
al resistance genes might not be transmitted into J_
NmUC N. meningitidis isolates. Of note, the NIID835 

strain was susceptible to penicillin G and ceftriaxone 
despite having the penA327 allele, which typically re-
duces susceptibility to penicillin G and third-genera-
tion cephalosporins (36).

Discussion
Meningococcus and gonococcus generally colonize 
distinct niches in humans causing systemic (menin-
gococcus) and sexually transmitted (gonococcus) dis-
ease; few cases exist that identify N. meningitidis as a 
causative agent for STI (14). Meningococcal urethritis 
is symptomatically indistinguishable from gonococ-
cal urethritis; one of the main problems in clinical and 
public health is that meningococcal urethritis cannot 
be diagnosed by the existing nucleic acid amplifica-
tion test, a standard method for STI diagnosis (14,34). 
Urethritis clade meningococci, such as US_NmUC 
and J_NmUC, have been isolated only from urethritis 
patients (10), rectal swab samples of asymptomatic 
MSM (18), and 1 neonatal patient with conjunctivitis 
(37); virulence was considered equal to gonococci. 
However, urethritis clade meningococci were also 
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Figure 3. Phylogenetic analysis of Neisseria meningitidis from different countries in study of detection of novel US N. meningitidis 
urethritis clade subtypes in Japan. Strains isolated from patients with IMD (red font) or STI (blue font), serogroup (NG or C), and 
country of origin are indicated. US_NmUC, J_NmUC, and J_NmUC-II N. meningitidis isolates have detailed profiles (Appendix 1 Table, 
https://wwwnc.cdc.gov/EID/article/29/11/23-1082-App1.xlsx). We included 1 sequence type 11 N. meningitidis strain isolated in Japan 
from a patient with an STI (SK028) and 4 serogroup C meningococci (MenC) that were phylogenetically close to SK028 (PE5, PE6, 
PE7, and LNP26948) (29). Moreover, we included 7 MenC phylogenetically close to US_NmUC (IMD strains in the United States) 
(31), 2 sequence type 11 MenC isolated from IMD patients during 2003–2020 in Japan (NIID647 and NIID716) (28), and 6 MenC 
phylogenetically close to the 2 MenC from Japan (28). Scale bar indicates nucleotide substitutions per site. C, serogroup C; IMD, 
invasive meningococcal disease; NG, nongroupable; STI, sexually transmitted infection.
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speculated to colonize the upper respiratory tracts of 
sexual partners of persons who eventually manifest-
ed urethritis. No published studies exist regarding 
carriage of urethritis clade meningococci in the upper 
respiratory tract; thus, the public health threat of ure-
thritis clade meningococci is unclear, and emergence 
of this clade should be continuously monitored. 

Although deletion of the cps locus or genes with-
in this locus, which results in loss of encapsulation, 
is a main features of urethritis clade meningococci 
(12,14), the pattern of deletion within the cps locus 
was different between J_NmUC and US_NmUC iso-
lates, despite the identical junctions between the csc 
gene and IS1301 sequences. Because meningococcal 
loss of encapsulation enhances adherence to human 
cells (15,38–44), loss of the capsule might promote N. 
meningitidis–induced urethritis. However, some cases 
of meningococcal urethritis might be caused by en-
capsulated N. meningitidis isolates (30). Therefore, the 
relationship between loss of encapsulation by dele-
tions within the cps locus in N. meningitidis and me-
ningococcal urethritis should be further examined.

Acquisition of the gonococcal aniA-norB locus 
(12) was another main feature of urethritis clade me-
ningococci (Figure 1). In some N. meningitidis strains, 
such as M-17541 (Appendix 2 Figure 1), the menin-
gococcal aniA gene was disrupted by an insertion or 
missense mutation (45,46). Moreover, if the menin-
gococcal aniA gene was intact, expression was lower 
than that of gonococcal aniA genes (45). However, the 
gonococcal aniA-norB locus was not detected in some 
N. meningitidis isolates from patients with meningo-
coccal urethritis (30), suggesting that acquisition of 
the gonococcal aniA-norB locus was advantageous 
(12,13,17) but not essential to cause urethritis.

A phylogenetic analysis using WGS data sup-
ports the hypothesis that US_NmUC and J_NmUC 
might be derived from the same ancestor (Figure 3). 
US_NmUC appears to have originated during 2006–
2012 in the United States (32), and the ancestral strain 
might have been imported into Japan during the same 
period. However, MenC, serogroup W, and CC11 
meningococci have rarely been detected in Japan for 
>40 years, even in IMD patients (29,47,48). Although 
CC11 meningococci have never been identified as a 
causative agent for meningococcal urethritis in Ja-
pan (29), J_NmUC meningococci, as well as the ST11 
ancestral strain, might be dormant in the urethra or 
pharynx of persons in Japan. Therefore, further anal-
yses of meningococcal isolates from healthy carriers 
and patients with urethritis will provide insights into 
dissemination of the N. meningitidis urethritis clade 
among the human population in Japan.

In conclusion, few studies have attempted to es-
timate the prevalence of meningococcal infections, 
including the urethritis clade. J_NmUC meningo-
cocci identified in this study are new subtypes of 
US_NmUC, and microbiologic characteristics, such 
as virulence and transmissibility, remain unclear. 
Continuous monitoring and analyses of J_NmUC 
meningococci will elucidate more precise features, 
including transmissibility and pathogenicity. More-
over, detection of J_NmUC in Japan suggests poten-
tial dissemination of several types of urethritis clade 
meningococci (US_NmUC and J_NmUC) worldwide. 
Global monitoring of urethritis-associated N. menin-
gitidis isolates should be required to reveal further 
microbiologic and epidemiologic aspects of urethritis 
clade meningococci and to improve laboratory diag-
nostic testing for urethritis.
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