Article DOI: https://doi.org/10.3201/eid2912.230780

Risk Factors for Enteric Pathogen Exposure among Children in Black Belt Region of Alabama, USA

Appendix

Zn-PVA Validation

The recovery of *Giardia duodenalis* and *Shigella sonnei* from stool were assessed using different preservative conditions over a period of 8 weeks. First, canine stools collected form a local shelter. Then, an aliquot of each sample was mixed 1:1 into five preservation buffers, which included Zn-PVA (ProtocolTM Parasitology System, Thermo Scientific, Middletown, VA), Total-FixTM (Medical Chemical Corp, Torrance, CA), Universal Extraction (UNEX) buffer (1), Nucleic Acid Preservation (NAP) buffer (2), and 70% ethanol (Fisher Scientific, Hampton, NH). During mixing, we spiked each aliquot with $\approx 10^6$ *Giardia duodenalis* cysts and 10^8 *Shigella sonnei* cells (BEI Resources, Manassas, VA). Stool preservative mixtures were stored at ambient temperatures, except Zn-PVA which we assessed at ambient and at 4°C because samples were shipped at ambient conditions but stored at 4°C in the lab. Nucleic acids were extracted from the aliquots using the same protocol as for children's stools immediately upon aliquot preparation and then intermittently over a period of 8 weeks. Finally, gene targets for the two pathogens were quantified using digital PCR (dPCR) to determine the temporal reduction in DNA recovery.

The two PCR assays used were adapted and optimized for dPCR using *Giardia duodenalis* (3) and *Shigella sonnei* (4) assays published for real-time PCR. Assays were validated and optimized using the QIAcuity Four Digital PCR system (QIAcuity 4, Qiagen, Hilden, Germany). Positive control materials were custom gBlocks (IDT, Coralville, IA) containing each assay's target sequence. PCR reactions were made by combining 2 μ L of template with 38 μ L of mastermix (Probe PCR Master Mix, Qiagen, Hilden, Germany) and run using 26k 24-well Nanoplates (Qiagen, Hilden, Germany). The Thermocycling conditions used were 95°C for 2 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. Partition fluorescence was measured using preset imaging settings in relative fluorescence units (RFU). Six negative process controls (preservative only) were extracted corresponding to each preservative on days 0 and 28, and from one negative extraction control (water) on each extraction day. One negative PCR control (water) and one positive control was run on each dPCR plate. All negative controls tested negative. Extracts were stored at -80°C until analysis. Thresholding was performed manually by selecting the mid-point between the positive and negative bands in the QIAcuity Software Suite (Qiagen, Hilden, Germany).

Data analysis was performed in Excel (Microsoft, Seattle, Washington) to convert gene copies per μ L into gene copies per gram of stool and calculate the mean log₁₀ gene copies and differences in those values over time.

Results

We observed heterogenous results for the decay of *Giardia* and *Shigella* DNA in the five preservation buffers (Appendix Table 2, Appendix Figure 3). For recovery of DNA from Giardia cysts, UNEX performed best, followed by ZnPVA at 4°C. Whereas for the recovery of DNA from Shigella cells, NAP performed best, followed by UNEX. For both pathogens ZnPVA at 4°C outperformed ZnPVA at ambient conditions. There was typically a 2-week gap from sample collection to receipt at the lab (median = 14 days, IQR = 11, 21) and DNA was extracted approximately 2 weeks later (median = 15 days, IQR = 8, 28). For a hypothetical sample stored at ambient for 14 days and at 4°C for 15 days, this suggests a 0.53 log₁₀ decrease in the *Giardia* concentration would have occurred.

References

- Hill VR, Narayanan J, Gallen RR, Ferdinand KL, Cromeans T, Vinjé J. Development of a nucleic acid extraction procedure for simultaneous recovery of DNA and RNA from diverse microbes in water. Pathogens. 2015;4:335–54. <u>PubMed https://doi.org/10.3390/pathogens4020335</u>
- Camacho-Sanchez M, Burraco P, Gomez-Mestre I, Leonard JA. Preservation of RNA and DNA from mammal samples under field conditions. Mol Ecol Resour. 2013;13:663–73. <u>PubMed</u> <u>https://doi.org/10.1111/1755-0998.12108</u>

- 3. Liu J, Gratz J, Amour C, Nshama R, Walongo T, Maro A, et al. Optimization of quantitative PCR methods for enteropathogen detection. PLoS One. 2016;11:e0158199. <u>PubMed</u> <u>https://doi.org/10.1371/journal.pone.0158199</u>
- 4. Lin WS, Cheng CM, Van KT. A quantitative PCR assay for rapid detection of *Shigella* species in fresh produce. J Food Prot. 2010;73:221–33. <u>PubMed https://doi.org/10.4315/0362-028X-73.2.221</u>
- Qvarnstrom Y, Visvesvara GS, Sriram R, da Silva AJ. Multiplex real-time PCR assay for simultaneous detection of *Acanthamoeba* spp., *Balamuthia mandrillaris*, and *Naegleria fowleri*. J Clin Microbiol. 2006;44:3589–95. <u>PubMed https://doi.org/10.1128/JCM.00875-06</u>
- 6. Sow D, Parola P, Sylla K, Ndiaye M, Delaunay P, Halfon P, et al. Performance of real-time polymerase chain reaction assays for the detection of 20 gastrointestinal parasites in clinical samples from Senegal. Am J Trop Med Hyg. 2017;97:173–82. <u>PubMed https://doi.org/10.4269/ajtmh.16-0781</u>
- Rudko SP, Ruecker NJ, Ashbolt NJ, Neumann NF, Hanington PC. *Enterobius vermicularis* as a novel surrogate for the presence of helminth ova in tertiary wastewater treatment plants. Appl Environ Microbiol. 2017;83:e00547–17. <u>PubMed https://doi.org/10.1128/AEM.00547-17</u>
- Costafreda MI, Bosch A, Pintó RM. Development, evaluation, and standardization of a real-time TaqMan reverse transcription-PCR assay for quantification of hepatitis A virus in clinical and shellfish samples. Appl Environ Microbiol. 2006;72:3846–55. <u>PubMed</u> <u>https://doi.org/10.1128/AEM.02660-05</u>
- 9. Perchetti GA, Nalla AK, Huang ML, Zhu H, Wei Y, Stensland L, et al. Validation of SARS-CoV-2 detection across multiple specimen types. J Clin Virol. 2020;128:104438. <u>PubMed</u> <u>https://doi.org/10.1016/j.jcv.2020.104438</u>
- Stokdyk JP, Firnstahl AD, Spencer SK, Burch TR, Borchardt MA. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR. Water Res. 2016;96:105–13. <u>PubMed https://doi.org/10.1016/j.watres.2016.03.026</u>
- Kaarme J, Hickman RA, Nevéus T, Blomberg J, Öhrmalm C. Reassuringly low carriage of enteropathogens among healthy Swedish children in day care centres. Public Health. 2016;140:221–7. <u>PubMed https://doi.org/10.1016/j.puhe.2016.05.011</u>

Appendix Table 1. TAC performance

	Target				95% limit of	
Target	Gene	y-intercept	R^2	Efficiency	detection †	Reference
enteric 16S	16S	38.9	0.998	101%	0.60	(3)
Acanthamoeba spp.	18S rRNA	37.8	1.000	97%	23	(5)
Adenovirus 40/41*	Fiber gene	NA	0.670	NA	NA	(3)
astrovirus	Capsid	37.5	0.998	87%	6.2	(3)
Balantidium coli	ITS-1	37.9	1.000	97%	2.2	(6)
Blastocystis spp.	18S rRNA	40.6	0.997	100%	2.2	(3)
Cystoisospora belli	18S rRNA	37.8	0.999	99%	6.2	(3)
Cyclospora cayetanensi	18S rRNA	37.2	0.998	99%	2.2	(3)
Campylobacter jejuni/coli	cadF	38.3	0.999	99%	21	(3)
Clostridioides difficile	tcdB	37.5	0.999	96%	6.2	(3)
Cryptosporidium spp.	18S rRNA	38.0	0.999	97%	0.6	(3)
DNA control (phocine herpes virus)	gВ	37.0	0.998	100%	6.2	(3)
Enterocytozoon bieneusi	ITS	37.2	0.999	102%	4.8	(3)
E. coli 0157:H7	rfbE	38.0	1.000	95%	2.2	(3)
Encephalitozoon intestinalis	SSU rRNA	38.5	0.999	98%	2.2	(3)
Enterobius vermicularis	5S	38.6	0.999	95%	72	(7)
EAEC (aaiC)	aaiC	38.2	0.999	96%	6.2	(3)
EAEC (aatA)	aatA	37.7	0.998	96%	23	(3)
Entamoeba hystolytica	18S rRNA	38.0	0.996	102%	6.2	(3)
Entamoeba spp.	18S rRNA	37.3	0.974	104%	21	(3)
EPEC (typical)	bfpA	37.5	0.999	98%	6.2	(3)
EPEC (atypical)	eae	37.6	0.999	98%	2.2	(3)
ETEC (LT)	LT	47.6	0.990	94%	291	(3)
ETEC (STh)	STh	38.8	0.999	98%	6.2	(3)
ETEC (STp)	STp	37.3	0.999	99%	2.2	(3)
Giardia spp.	18S rRNA	37.9	1.000	96%	6.2	(3)
Helicobacter pylori	ureC	37.7	0.998	97%	6.2	(3)
hepatitis A virus*	NCR	NA	0.840	132%	NA	(8)
Shigella/EIEC	ipaH	37.5	0.999	99%	23	(3)
MS2 (RNA control)	MS2g1	37.5	0.999	90%	1.0	(3)
Norovirus GII	ORF1-2	37.0	0.999	92%	23	(3)
Norovirus GI	ORF1-2	35.9	0.997	93%	23	(3)
Plesiomonas shigelloides	gyrB	38.2	1.000	96%	23	(3)
rotavirus	NSP3	38.0	0.998	91%	6.2	(3)
Salmonella spp.	invA	38.4	1.000	96%	2.2	(3)
Sapovirus I/II/IV	RdRp	38.2	0.998	88%	2.2	(3)
Sapovirus V	RdRp	36.7	0.999	91%	2.2	(3)
SARS-CoV-2	N1	36.2	0.995	92%	6.2	(9)
STEC (stx1)	stx1	39.9	1.000	97%	72	(3)
STEC (stx2)	stx2	38.3	0.967	98%	96	(3)
Yersinia enterocolitica	lvtA	38.3	0.998	94%	2.2	(3)

*Excluded due to poor standard curve performance †Stokdyk *et al.* 2016 (*10*); units are gene copies per reaction.

Appendix Table 2. MIQE Checklist

Item to check	Importance	Checklist
Experimental design		
Definition of experimental and control groups	E	Cross-sectional study with no intervention or control
	_	group
Number within each group	E	Stools from 488 children were analyzed
Assay carried out by core lab or investigator's	D	Investigator's lab
lab?		
Sample	-	
Description	E	150 mg of stool preserved 1:1 in ZnPVA (75mg of
Valuma/mass of sample processed	П	stool and 75mg of preservative)
Microdiagostion or mocrodiagostion	5	150 mg Not applicable
Processing procedure		Shinned at ambient, and stored at 40
If frozen - how and how quickly?	F	Not frozen
If fixed - with what how quickly?	F	Preserved in ZnPV/A at the time of stool passage
Sample storage conditions and duration	F	Median 14 d from collection to analysis Median 15 d
(especially for FFPE samples)	-	from receipt to DNA extraction.
Nucleic acid extraction		
Procedure and/or instrumentation	E	See methods section
Name of kit and details of any modifications	E	QIAamp 96 Virus QIAcube HT Kit automated on a
		QIAcube HT
Source of additional reagents used	D	Precellys SK38 bead beating tubes (Bertin
		Technologies, Rockville, MD)
Details of DNase or RNase treatment	E	Not applicable
Contamination assessment (DNA or RNA)	E	At least one extraction negative control was included
	_	during each day of extractions
Nucleic acid quantification	E	Qubit 1X HS dsDNA Kit
Instrument and method	E E	Qubit 4 Fluorometer
RNA integrity method/instrument	E	Not measured Manitared amplification of anikad controls
	E	Monitored amplification of spiked controls
Complete reaction conditions	F	One-step reverse transcription
Amount of RNA and reaction volume	F	Reaction volume = 1.5 ul
Priming oligonucleotide (if using GSP) and	F	Proprietary
concentration	-	riophotary
Reverse transcription and concentration	Е	ArravScript Reverse transcription
Temperature and time	Ē	45°C for 20 min
Manufacturer of reagents and catalog numbers	D	Applied Biosystems, AgPath-ID One-Step RT-PCR
		Reagents, Catalog number: 4387391
qPCR target information		
If multiplex, efficiency and LOD of each assay.	E	Appendix Table 1
Location of amplicon	D	Appendix Table 1
In silico specificity screen (BLAST, etc)	E	We BLASTed all assays to confirm specificity before
		ordering the custom TAC.
qPCR oligonucleotides	-	
Primer sequences	E D**	
Probe sequences	D	Appendix Table 2
Manufacturer of oligonuclostides		ThormoEisbor Scientific
aPCR protocol	D	
Complete reaction conditions	F	45°C for 20 min and 95°C for 10 min, followed by 45
	L	cycles of 95°C for 15 s and 60°C for 1 min
Reaction volume and amount of cDNA/DNA	F	40 ul of template with 60 ul of AgPath-ID One-Step
	-	RT-PCR Reagents
Primer. (probe). Ma++ and dNTP concentrations	Е	All assays contained the same concentrations of
, (i), S		primers (900 nmol/L) and probe (250 nmol/L). The
		Mg2+ and dNTP concentrations are not listed in the in
		the User Guide.
Polymerase identity and concentration	E	AmpliTaq Gold polymerase
Buffer/kit identity and manufacturer	E	AgPath-ID One-Step RT-PCR Reagents
Additives (SYBR Green I, DMSO, etc.)	E	No additives
Manufacturer of plates/tubes and catalog number	D	ThermoFisher Scientific
Complete thermocycling parameters	E	45°C for 20 min and 95°C for 10 min, followed by 45
	P	cycles of 95°C for 15 s and 60°C for 1 min
Reaction setup (manual/robotic)	U	ivianual set-up in a disinfected dead air box (10%
		fifteen minutes, and a final cleaning ston with 70%
		ethanol
Manufacturer of gPCR instrument	F	ThermoFisher Scientfic
	-	

Item to check	Importance	Checklist
qPCR validation		
Evidence of optimisation (from gradients)	D	See Liu <i>et al.</i> 2016 (3)
Specificity (gel, sequence, melt, or digest)	E	See Liu <i>et al.</i> 2016 (3)
Standard curves with slope and y-intercept	Е	Appendix Table 1
PCR efficiency calculated from slope	Е	Appendix Table 1
r2 of standard curve	E	Appendix Table 1
Evidence for limit of detection	Е	Appendix Table 1
Data analysis		
gPCR analysis program (source, version)	Е	QuantStudio Real-Time PCR Software V1.2 CDC
Cq method determination	Е	Manual thresholding
Results of NTCs	Ē	We observed no amplification before at Ct of 40 in our
		two PCR negative controls. Among the 12 negative
		extraction controls, we observed no amplification
		before a Ct of 40.
Justification of number and choice of reference	E	
genes		
Description of normalization method	E	Normalized to mass of stool ZnPVA mixture extracted
		from (150mg)
Number and concordance of biologic replicates	D	See results section.
Number and stage (RT or qPCR) of technical	E	See results section.
replicates		
Statistical methods for result significance	E	See methods section
Software (source, version)	E	R Studio V2.2.2

Appendix Table 3. Primer and probe sequences

Pathogen	Primer or probe sequence (5' - 3')
Astrovirus	Fwd: CAGTTGCTTGCTGCGTTCA
	Rev: CTTGCTAGCCATCACACTTCT
	Probe: CACAGAAGAGCAACTCCATCGC
Norovirus GI	Fwd: CGYTGGATGCGNTTYCATGA
	Rev: CTTAGACGCCATCATCATTYAC
	Probe: TGGACAGGAGATCGC
Norovirus GII	Fwd: CARGARBCNATGTTYAGRTGGATGAG
	Rev: TCGACGCCATCTTCATTCACA
	Probe: TGGGAGGGCGATCGCAATCT
Sapovirus (I, II, IV)	Fwd: GAYCAGGCTCTCGCYACCTAC
	Rev: CCCTCCATYTCAAACACTA
	Probe: CYTGGTTCATAGGTGGTRCAG
Sapovirus V	Fwd: TTTGAACAAGCTGTGGCATGCTAC
	Rev: CCCTCCATYTCAAACACTA
	Probe: CAGCTGGTACATTGGTGGCAC
Adenovirus 40/41	Fwd: AACTTTCTCTCTTAATAGACGCC
	Rev: AGGGGGCTAGAAAACAAAA
	Probe: CTGACACGGGCACTCT
Rotavirus	Fwd: ACCATCTWCACRTRACCCTCTATGAG
	Rev: GGTCACATAACGCCCCTATAGC
	Probe: AGTTAAAAGCTAACACTGTCAAA
Campylobacter jejuni or coli	Fwd: CTGCTAAACCATAGAAATAAAATTTCTCAC
	Rev: CTTTGAAGGTAATTTAGATATGGATAATCG
	Probe: CATTTTGACGATTTTTGGCTTGA
C. difficile	Fwd: GGTATTACCTAATGCTCCAAATAG
	Rev: TTTGTGCCATCATTTTCTAAGC
	Probe: CCTGGTGTCCATCCTGTTTC
EAEC (aaiC)	Fwd: ATTGTCCTCAGGCATTTCAC
	Rev: ACGACACCCCTGATAAACAA
	Probe: TAGTGCATACTCATCATTTAAG
EAEC (aatA)	Fwd: CTGGCGAAAGACTGTATCAT
	Rev: TTTTGCTTCATAAGCCGATAGA
	Probe: TGGTTCTCATCTATTACAGACAGC
STEC (stx1)	Fwd: ACTTCTCGACTGCAAAGACGTATG
	Rev: ACAAATTATCCCCTGWGCCACTATC
	Probe: CTCTGCAATAGGTACTCC
STEC (stx2)	Fwd: CCACATCGGTGTCTGTTATTAACC
	Rev: GGTCAAAACGCGCCTGATAG
	Probe TTGCTGTGGATATACGAGG

Pathogen	Primer or probe sequence (5' - 3')
EPEC (eae)	Fwd: CATTGATCAGGATTTTTCTGGTGATA
	Rev: CTCATGCGGAAATAGCCGTTA
	Probe: ATACTGGCGAGACTATTTCAA
EPEC (bfpA)	Fwd: TGGTGCTTGCGCTTGCT
	Rev: CGTTGCGCTCATTACTTCTG
	Probe: CAGTCTGCGTCTGATTCCAA
ETEC LT	Fwd: TTCCCACCGGATCACCAA
	Rev: CAACCTTGTGGTGCATGATGA
	Probe: CTTGGAGAGAAGAACCCT
ETEC ST	Fwd h: GCTAAACCAGYAGRGTCTTCAAAA
	Fwd p: TGAATCACTTGACTCTTCAAAA
	Rev h: CCCGGTACARGCAGGATTACAACA
	Rev p: GGCAGGATTACAACAAAGTT
	Probe h: TGGTCCTGAAAGCATGAA
	Probe p: TGAACAACACATTTTACTGCT
EIEC or Shigella	Fwd: CCTTTTCCGCGTTCCTTGA
	Rev: CGGAATCCGGAGGTATTGC
	Probe: CGCCTTTCCGATACCGTCTCTGCA
Salmonella	Fwd: CTCACCAGGAGATTACAACATGG
	Rev: AGCTCAGACCAAAAGTGACCATC
	Probe: CACCGACGGCGAGACCGACTTT
E. coli O157	Fwd: TTTCACACTTATTGGATGGTCTCAA
	Rev: CGATGAGTTTATCTGCAAGGTGAT
• · · · · ·	Probe: CICICITICCICIGCGGICCI
Cryptosporidium	Fwd: GGGTTGTATTTATTAGATAAAGAACCA
Ciardia ann	
Glardia spp.	
E histolytics	
E. HISIOIYIICA	
Entamoeha soo	
Blastocystis spp	Fwd ⁻ TGGTCCGRTGAACACTTTGGAT
	Rev CCTACGGAAACCTTGTTACGACTTCA
	Probe: CTTCCTCTAAATGRTAAGATT
16s	Fwd: TGCAAGTCGAACGAAGCACTTTA
	Rev: GCAGGTTACCCACGCGTTAC
	Probe: CGCCACTCAGTCACAAA
PhHV	Fwd: GGGCGAATCACAGATTGAATC
	Rev: GCGGTTCCAAACGTACCAA
	Probe: TATGTGTCCGCCACCATCT
Yersinia enterocolitica	Fwd: TGATTCACCAGCAGCAATAC
	Rev: GGCATCATGAAAGGCGG
	Probe: TGTCGGTTTCTCCTTCCAGG
Heliobacter pylori	Fwd: GACACCAGAAAAAGCGGCTA
	Rev: AGCGCATGTCTTCGGTTAAA
	Probe: ICACIAAAGCGIIIICIACC
Plesiomonas shigelloides	
Ovela en en estera en el	
Cyclospora cayetanensi	
Cystoisospora belli	
Blastocystis spp	Fwd ⁻ TGGTCCGRTGAACACTTTGGAT
······································	Rev: CCTACGGAAACCTTGTTACGACTTCA
	Probe: CTTCCTCTAAATGRTAAGATT
Enterocytozoon bieneusi	Fwd: TGTGTAGGCGTGAGAGTGTATCTG
	Rev: CATCCAACCATCACGTACCAATC
	Probe: CACTGCACCCACATCCCTCACCCTT
Encephalitozoon intestinalis	Fwd: CACCAGGTTGATTCTGCCTGAC
	Rev: CTAGTTAGGCCATTACCCTAACTACCA
	Probe: CTATCACTGAGCCGTCC

Pathogen	Primer or probe sequence (5' - 3')	
Balantidium coli	Fwd: TGCAATGTGAATTGCAGAACC	
	Rev: TGGTTACGCACACTGAAACAA	
	Probe: CTGGTTTAGCCAGTGCCAGTTGC	
Acanthamoeba spp.	Fwd: CCCAGATCGTTTACCGTGAA	
	Rev: TAAATATTAATGCCCCCAACTATC	
	Probe: CTGCCACCGAATACATTAGCATGG	
Hepatitis A Virus	Fwd: TCACCGCCGTTTGCCTAG	
	Rev: GGAGAGCCCTGGAAGAAAG	
	Probe: TTAATTCCTGCAGGTTCAGG	
SARS-CoV-2	Fwd: GACCCCAAAATCAGCGAAAT	
	Rev: TCTGGTTACTGCCAGTTGAATCTG	
	Probe: ACCCCGCATTACGTTTGGTGGACC	

Appendix Table 4. Risk factors for ≥1 pathogen detection (using only complete cases, n = 341)

			. /	
Variable	Reference	Exposure	RR (95% CI)	aRR (95% CI)
Pay a water bill	Yes	No	1.8 (1.3, 2.6)	1.8 (1.3, 2.6)
Sanitation	Sewer connection	Cesspit	NA	NA
		Other	NA	NA
		Septic Tank	0.90 (0.59, 1.4)	0.91 (0.60, 1.4)
		Straight Pipe	0.98 (0.53, 1.8)	0.91 (0.49, 1.7)
Child's Screen Time	<2 h	2–4 h	0.66 (0.42, 1.0)	0.71 (0.45, 1.1)
		>4 h	0.67 (0.43, 1.0)	0.64 (0.41, 1.0)
Gender	Male	Female	0.91 (0.66, 1.3)	0.92 (0.66, 1.3)
International Travel	No	Yes	0.92 (0.34, 2.5)	1.0 (0.37, 2.9)
Raw Sewage	No	Yes	1.2 (0.65, 2.3)	1.2 (0.70, 2.1)
Age	<5 y	5–10 y	0.77 (0.39, 1.5)	1.0 (0.48, 2.1)
-	-	>10 y	0.88 (0.46, 1.7)	1.1 (0.55, 2.4)

Appendix Table 5. Decay constants for different preservation buffers

Target	Preservative	Log10 decay in DNA concentration per day
Giardia	Zn PVA (4C)	-0.0037
Giardia	Zn PVA (20C)	-0.034
Giardia	UNEX	-0.0008
Giardia	TotalFix	-0.0541
Giardia	NAP	-0.0358
Giardia	70% Ethanol	-0.0469
Shigella	Zn PVA (4C)	-0.0085
Shigella	Zn PVA (20C)	-0.0303
Shigella	UNEX	-0.003
Shigella	TotalFix	-0.0154
Shigella	NAP	-0.0003
Shigella	70% Ethanol	-0.0442

Appendix Table 6. Cor	nparison with Swedish Children
Appendix rubic e. 001	inpulsion with owedish officient

Type	Pathogen	Prevalence in rural Alabama	Prevalence among Swedish Children in Davcare (11)
Anv	≥1 Pathogen detected	26% (127/488)	
Bacteria	<i>Clostridioides difficile</i> (toxin B)	6.6% (32/488)	2.5% (11/438)
	EPEC (atypical)	6.1% (30/488)	Not assessed
	EÀEC	3.9% (19/488)	Not assessed
	Helicobacter pylori	2.3% (11/488)	Not assessed
	EPEC (typical)	1.4% (7/488)	Not assessed
	Yersinia enterocolitica	1.0% (5/488)	0% (0/438)
	<i>E. coli</i> O157:H7	0.8% (4/488)	0% (0/438)
	Plesiomonas shigelloides	0.4% (2/488)	Not assessed
	ETEC	0.4% (2/488)	1.4% (6/438)
	Shigella/EIEC	0.2% (1/488)	0% (0/438)
	Salmonella spp.	0.2% (1/488)	0% (0/438)
	STEC	0.2% (1/488)	0% (0/438)
	Campylobacter jejuni/coli	0% (0/488)	0.7% (3/438)
Fungus/Algae	Blastocystis spp.	3.7% (18/488)	Not assessed

Туре	Pathogen	Prevalence in rural Alabama	Prevalence among Swedish Children in Daycare (11)
	Enterocytozoon bieneusi	0% (0/488)	Not assessed
	Encephalitozoon intestinalis	0% (0/488)	Not assessed
Protozoa	Balantidium coli	0.6% (3/488)	Not assessed
	Acanthamoeba spp.	0.4% (2/488)	Not assessed
	Giardia spp.	0.4% (2/488)	0% (0/438)
	Entamoeba hystolytica	0.2% (1/488)	0% (0/438)
	Cystoisospora belli	0% (0/488)	Not assessed
	Cyclospora cayetanensi	0% (0/488)	Not assessed
	Cryptosporidium spp.	0% (0/488)	0% (0/438)
	Entamoeba spp.	0% (0/488)	Not assessed
Virus	norovirus GI/GII	1.4% (7/488)	0.7% (3/438)
	SARS-CoV-2	0.6% (3/488)	Not assessed
	rotavirus	0.4% (2/488)	0% (0/438)
	sapovirus	0.4% (2/488)	Not assessed
	astrovirus	0.2% (1/488)	Not assessed

Appendix Figure 1. Amplification and multicomponent plots.

Appendix Figure 2. Acyclic graph.

Appendix Figure 4. dPCR 2-D Scatterplot. Wells G2, G3, H2, and H3 were negative extraction controls, well H1 was a PCR positive control; all other wells were samples. Samples that were outside the range of quantification (i.e., F2, F3, and G1) were rerun at a 1:10 dilution.