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Highly pathogenic avian influenza (HPAI) H5 
viruses of the goose/Guangdong lineage have 

been categorized into multiple clades (0–9) and sub-
clades. Viruses belonging to H5 clade 2.3.4.4 are dif-
ferentiated into 8 subclades (a–h) and are of high con-
cern because of spillover events into mammals and 
direct mammal-to-mammal transmission reported in 
Spain (1,2). HPAI H5N1 virus subclade 2.3.4.4b has 
been circulating in Africa, Asia, and Europe since 
≈2020 (3,4). Subsequently, this subclade was identi-
fied in North America and Canada in late 2021; Co-
lombia, Venezuela, Peru, Ecuador, and Chile during 
October–December 2022; and in Bolivia, Argentina, 
and Uruguay during January–February 2023 (1).

By November 2022, ≈300 dead Peruvian pelicans 
(Pelecanus thagus) and 24 dead blue-footed boobies 
(Sula nebouxii) were found on the northern coast of 
Peru (5). On November 23, 2022, the National Agrar-
ian Health Service of Peru (Servicio Nacional de Sani-
dad Agraria del Peru) and the US Naval Medical Re-
search Unit SOUTH reported HPAI H5N1 virus was 
present in Peru (6). Subsequently, we sequenced 18 
additional virus samples positive for hemagglutinin 
(HA) subtype 5 (H5) that were collected from 3 Peru-
vian pelicans, 12 chickens (Gallus gallus domesticus), 2 
Neotropic cormorans (Nannopterum brasilianum), and 
1 lion (Panthera leo, from a zoo). We extracted viral 
RNA from respiratory tissue or environmental fecal 
samples. We collected samples from birds during No-
vember–December 2022 from northern and central 
coasts of Peru and the sample from the lion in Febru-
ary 2023 from Junin (Andean region) (Appendix Table 
1, https://wwwnc.cdc.gov/EID/article/29/12/23-
0505-App1.xlsx).

We amplified influenza A virus genomes by us-
ing a modified protocol (7). We prepared libraries 
by using the Nextera XT DNA Library Preparation 
Kit (Illumina, https://www.illumina.com) and se-
quenced them by using the MiSeq Reagent Kit v3 
(600-cycle paired-end) on the MiSeq platform (Illumi-
na). We trimmed raw reads, removed host sequences, 
and then de novo assembled the filtered reads. We 
identified the resulting contigs as H5N1 by using a 
BLASTn search (https://blast.ncbi.nlm.nih.gov). We 
deposited all obtained sequences in GenBank (acces-
sion nos. OQ547312–451).

We performed phylogenetic analysis to classify 
subclades by using the maximum-likelihood meth-
od. We retrieved H5 sequences from HPAI clade 
2.3.4.4 and low pathogenicity avian influenza virus-
es published in GISAID (https://www.gisaid.org) 
and GenBank during 2014–2023 (until July 20, 2023). 
The phylogenetic tree of HA sequences placed H5N1 
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We identified highly pathogenic avian influenza A(H5N1) 
virus clade 2.3.4.4b in wild birds, poultry, and a lion in 
Peru during November 2022–February 2023 and mark-
ers associated with transmission adaptation and antivi-
ral drug resistance. Continuous genomic surveillance is 
needed to inform public health measures and avoid mass 
animal deaths.
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Figure. Phylogenetic analysis of highly pathogenic avian influenza A(H5N1) from wild birds, poultry, and mammals, Peru. Maximum-likelihood 
method was used for phylogeny of 101 hemagglutinin H5 sequences from avian influenza viruses. Red lines indicate clustering of strains from 
Peru and sequences from this study; bold font indicates the sequences from this study. Dark blue lines indicate other strains from South and 
North America. Non–goose/Guangdong lineage virus strains from Eurasia were outgroups. Phylogenetic tree was generated and edited with 
MEGA X software (https://www.megasoftware.net). Sequences were aligned by using the MUSCLE program in the AliView alignment viewer 
and editor (https://www.ormbunkar.se/aliview). We used general time reversible and gamma distribution models; robustness of tree topology 
was assessed with 1,000 bootstrap replicates. Only bootstrap values >70% are shown. Scale bar indicates nucleotide substitutions per site.



strains from North, Central, and South America into 
different groups within subclade 2.3.4.4b. We iden-
tified 6 subclades comprising sequences from 1–5 
countries (Venezuela, Colombia, Ecuador, Mexico/
Honduras/Costa Rica/Panama/Colombia, Costa 
Rica/Panama/Colombia, and Ecuador/Peru/Chile) 
and 1 sequence from Colombia that did not cluster 
with other strains from South America. Our results 
suggest that the strains from South America were 
not monophyletic and represented 7 independent 
virus introduction events (Figure), complementing 
a previous report (8).

We also compared available amino acid sequenc-
es of virus proteins among strains from South Ameri-
ca to identify differences among subclades (Appendix 
Table 2). We identified several amino acid changes 
that were shared among members of the same sub-
clade (Appendix Table 3). Those changes were consis-
tent with our HA phylogenetic analysis, supporting 
the hypothesis that independent virus introduction 
events occurred in South America. 

We performed molecular marker analysis to iden-
tify specific amino acid mutations associated with 
HPAI adaptation, transmission, and antiviral drug 
resistance, such as those in neuraminidase (NA), ma-
trix protein 2, and polymerase acidic protein (9). We 
identified 21 molecular markers involved in HPAI 
H5N1 pathogenicity that were present in all analyzed 
sequences from South America and 7 markers that 
were found in some sequences (Table). However, 2 
mutations in the polymerase basic 2 protein (Q591K 
and D701N) associated with mammal adaptation 
were identified only in sequences from sea lions in 
Peru and from 1 human case in Chile. The T271A mu-
tation in polymerase basic 2 protein linked to mam-
mal adaptation and S369I and I396M mutations in 
NA that were observed in the mink outbreak in Spain 
(2) were not found in sequences from South America. 
We did not find amino acid mutations related to re-
sistance to the antiviral drugs oseltamivir, zanamivir 
and peramivir (in NA), amantadine and rimantadine 
(in matrix protein 2), or baloxavir (in PA). We only 
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Table. Summary of molecular markers identified in influenza virus strains from South America in study of highly pathogenic avian 
influenza A(H5N1) from wild birds, poultry, and mammals, Peru* 
Protein Mutation/motif Phenotype 
PB2 D9N† Increases virulence in mice 

L89V, G309D, T339K, R477G, 
I495V, K627E, A676T 

Increases polymerase activity in mammalian cell lines and increases virulence in 
mice 

Q591K‡ Increases polymerase activity in mammalian and avian cell lines, increases 
replication in mammalian cell lines, increases virulence in mice 

D701N‡ Increases polymerase activity, enhances replication efficiency, increases virulence 
and contact transmission in guinea pigs, increases virulence in mice 

PB1 D3V Increases polymerase activity and viral replication in avian and mammalian cell 
lines 

D622G Increases polymerase activity and virulence in mice 
PB1-F2  N66S Enhances replication, virulence, and antiviral response in mice 
PA N383D Increases polymerase activity in mammalian and avian cell lines 
HA D94N,§ S133A, S154N Increases virus binding to α2–6 receptor 

T156A Increases virus binding to α2–6, increases transmission in guinea pigs 
S107R, T108I Increases virulence in chickens and mice and the pH of fusion 
K218Q, S223R Increases virus binding to α2–3 and α2–6 receptors 

321-329 (PLR(EorG)KRRKR) Polybasic cleavage motif sequence required for HPAIV 
NP M105V¶ Increases virulence in chickens 

I109T# Increases polymerase activity and viral replication in chickens (but not ducks), 
increases virulence in chickens 

A184K Increases replication in avian cells and virulence in chickens 
M1 N30D Increases virulence in mice 

I43M Increases virulence in mice, chickens and ducks 
T215A Increases virulence in mice 

M2 I27A** Increases resistance to amantadine and rimantadine 
NS1 P42S Increases virulence and decreases the antiviral response in mice 

C138F Increases replication in mammalian cell and decreases the interferon response 
V149A Increases virulence and decreases the interferon response in chickens 

L103F, I106M Increases virulence in mice 
K55E, K66E, C138F Enhances replication in mammalian cells and decreases the interferon response 

*Molecular markers of influenza virus strains were identified as previously described (9). HA, hemagglutinin; HPAIV, highly pathogenic avian influenza 
virus; M1, matrix protein 1; M2, matrix protein 2; NP, nucleoprotein; NS1, nonstructural protein 1. 
†Only in 2 sequences from pelicans (GISAID [https://www.gisaid.org] accession nos. EPI_ISL_17099964, EPI_ISL_17165223). 
‡Only in sequences from 2 sea lions in Peru and 1 human case in Chile.  
§Only in 1 sequence from a wild bird in Peru (GISAID accession no. EPI_ISL_17660074). 
¶Mutation sequences from Venezuela and Colombia (Choco) have M rather than V. 
#Only in sequences from Colombia (Choco). 
**Only in 1 sequence from a wild bird in Peru (GISAID accession no. EPI_ISL_17777528). 

 



found the H252Y mutation in NA associated with 
moderately reduced susceptibility to oseltamivir (10).

In conclusion, HPAI H5N1 virus clade 2.3.4.4b 
was identified in samples collected in Peru from wild 
birds, poultry, and a lion during November 2022–Feb-
ruary 2023. According to phylogenetic analysis, the 
multiple cluster distribution revealed independent 
introductions of HPAI H5N1 clade 2.3.4.4b viruses 
into South America from North and Central America. 
Four introductions occurred in Colombia, 2 in Ecua-
dor, and 1 in Venezuela/Peru. In addition, strains 
from Peru were closely related to those from Ecuador 
and Chile. Finally, we describe the presence of pre-
viously reported mutations that might have public 
health implications because of their associations with 
increased virulence and virus replication and mam-
mal host adaptation along with reduced susceptibili-
ty to oseltamivir. Continuous genomic surveillance is 
needed to identify markers associated with mammal 
adaptation and potential human-to-human transmis-
sion, to inform public health measures, avoid mass 
animal deaths, and to protect human populations.
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Orthohantaviruses (family Hantaviridae, genus 
Orthohantavirus) are a group of zoonotic viruses 

primarily found in muroid rodents; many of the vi-
ruses are pathogenic in humans (1). Pathogenic ortho-
hantaviruses in the Americas are hosted by rodents 
in subfamilies Sigmodontinae and Neotominae and 

cause hantavirus cardiopulmonary syndrome (HCPS) 
in humans, which has a 30%–40% case-fatality rate 
(2,3). Although several pathogenic orthohantaviruses 
have been identified in the Americas, the specific etio-
logic virus is unknown for many HCPS cases (2).

We report a novel orthohantavirus species, puta-
tively named Ozark orthohantavirus or Ozark virus 
(OZV), in hispid cotton rats (Sigmodon hispidus) in Ar-
kansas, USA. Hispid cotton rats are a reservoir host 
of a notable pathogenic orthohantavirus, Black Creek 
Canal virus (BCCV) (4), in the United States and have 
also been identified as the host of the proposed Mule-
shoe virus (5). Despite the wide distribution of hispid 
cotton rats in North America (22 US states and north-
ern Mexico), previously published orthohantavirus 
surveillance and detection in this rat species has been 
limited to only Florida and Texas in the United States.

We analyzed frozen lung tissue samples col-
lected from euthanized hispid cotton rats previously 
captured during 2020 and 2021 in the Ozark Plateau 
region of Arkansas, USA (6). Of 338 rat samples pre-
viously tested, 26 (7.7%) were orthohantavirus-sero-
positive; seropositive rats had been captured in 5 dis-
tinct grassland sites (6).

We performed homogenization, filtration, 
and nuclease pretreatment of available lung tissue 
samples from 13 orthohantavirus-seropositive ro-
dents captured in 3 of the 5 unique grassland sites 
(Appendix Table, https://wwwnc.cdc.gov/EID/
article/29/12/23-0549-App1.pdf) (7,8). We then ex-
tracted RNA by using Invitrogen TRIzol (Thermo 
Fisher Scientific, https://www.thermofisher.com) 
according to manufacturer guidelines. We used the 
NEBNext rRNA Depletion Kit (human/mouse/
rat) to remove host rRNA, then the NEBNext Ultra 
II RNA Library Prep Kit (both from New England 
Biolabs, https://www.neb.com) to construct librar-
ies. We performed next-generation sequencing by 
using the Illumina NovaSeq system (https://www. 
illumina.com). We quality filtered and de novo assem-
bled the raw data and annotated the contigs by using  
LazyPipe (9).

We obtained complete genome sequences of OZV 
coding regions for small (S), medium (M), and large 
(L) segments from 2 rat samples and partial genome 
sequences from 6 other rat samples that included 3 
additional complete S and 4 additional complete M 
segment sequences (Appendix Table). We used Open 
Reading Frame (ORF) Finder (https://www.ncbi.
nlm.nih.gov/orffinder) to detect ORFs and the Expasy 
translate tool (https://www.expasy.org) to translate 
ORFs to amino acid sequences. We compared cor-
responding nucleic acid and protein phylogenies of 
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We report a novel orthohantavirus, putatively named 
Ozark orthohantavirus, in hispid cotton rats captured 
within the Ozark Plateau in Arkansas, USA. This virus 
phylogenetically clusters with other orthohantaviruses 
that cause severe human disease. Continued orthohan-
tavirus surveillance and virus sequencing are needed to 
address the potential public health threat of this virus.


