Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 2—February 2023
Research

Penicillin and Cefotaxime Resistance of Quinolone-Resistant Neisseria meningitidis Clonal Complex 4821, Shanghai, China, 1965–2020

Mingliang Chen1, Youxing Shao1, Jiayuan Luo, Lingyue Yuan, Minggui WangComments to Author , Min ChenComments to Author , and Qinglan GuoComments to Author 
Author affiliations: Shanghai Institutes of Preventive Medicine, Shanghai, China (Mingliang Chen); Shanghai Municipal Center for Disease Control and Prevention, Shanghai (Mingliang Chen, J. Luo, L. Yuan, Min Chen); Huashan Hospital, Fudan University, Shanghai (Y. Shao, M. Wang, Q. Guo); Key Laboratory of Clinical Pharmacology of Antibiotics, National Heath Commission of the People's Republic of China, Shanghai (Y.Shao, M.G. Wang, Q. Guo)

Main Article

Figure 3

Phylogenetic analysis of penA alleles of Neisseria isolates and genomes, Shanghai, China, 1965–2020, and reference isolates. Phylogenetic analysis of the nucleotide sequences of 580 penA alleles (nucleotides 1321–1722) from N. meningitidis (n = 21,582), N. gonorrhoeae (n = 7,605), N. lactamica (n = 683), N. subflava (n = 431), N. cinerea (n = 65) , N. polysaccharea (n = 52), N. mucosa (n = 33), and other commensal Neisseria (n = 73) isolates and genomes collected in this study and from the Neisseria PubMLST database was constructed by using IQ-TREE version 2.2.0 (23), with both SH-aLRT test and UFboot set as 1,000. The values of SH-aLRT and ultrafast bootstrap (Ufboot) are shown on the node of each clade as SH-aLRT/Ufboot. Clusters were determined by using SH-aLRT values of 80% from the SH-aLRT tests with 1,000 replicates and ultrafast bootstrap (UFBoot) values of 85% from bootstrap tests with 1,000 replicates (IQ-TREE). Alleles penA378, penA405, penA552, penA553, penA843, penA868, and penA917 were within in the N. lactamica cluster; penA662, penA777, and penA865 were within the N. subflava cluster; penA379 was within the N. gonorrhoeae cluster; and the other 8 penA alleles were located outside the 5 clusters. Scale bar indicates substitutions per site. PenNS, penicillin-nonsusceptible meningococci.

Figure 3. Phylogenetic analysis of penA alleles of Neisseria isolates and genomes, Shanghai, China, 1965–2020, and reference isolates. Phylogenetic analysis of the nucleotide sequences of 580 penA alleles (nucleotides 1321–1722) from N. meningitidis (n = 21,582), N. gonorrhoeae (n = 7,605), N. lactamica (n = 683), N. subflava (n = 431), N. cinerea (n = 65) , N. polysaccharea (n = 52), N. mucosa (n = 33), and other commensal Neisseria (n = 73) isolates and genomes collected in this study and from the Neisseria PubMLST database was constructed by using IQ-TREE version 2.2.0 (23), with both SH-aLRT test and UFboot set as 1,000. The values of SH-aLRT and ultrafast bootstrap (Ufboot) are shown on the node of each clade as SH-aLRT/Ufboot. Clusters were determined by using SH-aLRT values of 80% from the SH-aLRT tests with 1,000 replicates and ultrafast bootstrap (UFBoot) values of 85% from bootstrap tests with 1,000 replicates (IQ-TREE). Alleles penA378, penA405, penA552, penA553, penA843, penA868, and penA917 were within in the N. lactamica cluster; penA662, penA777, and penA865 were within the N. subflava cluster; penA379 was within the N. gonorrhoeae cluster; and the other 8 penA alleles were located outside the 5 clusters. Scale bar indicates substitutions per site. PenNS, penicillin-nonsusceptible meningococci.

Main Article

References
  1. Pollard  AJ. Global epidemiology of meningococcal disease and vaccine efficacy. Pediatr Infect Dis J. 2004;23(Suppl):S2749. DOIPubMedGoogle Scholar
  2. Maiden  MC, Bygraves  JA, Feil  E, Morelli  G, Russell  JE, Urwin  R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95:31405. DOIPubMedGoogle Scholar
  3. Shao  Z, Li  W, Ren  J, Liang  X, Xu  L, Diao  B, et al. Identification of a new Neisseria meningitidis serogroup C clone from Anhui province, China. Lancet. 2006;367:41923. DOIPubMedGoogle Scholar
  4. Zhou  H, Shan  X, Sun  X, Xu  L, Gao  Y, Li  M, et al. Clonal characteristics of invasive Neisseria meningitidis following initiation of an A + C vaccination program in China, 2005-2012. J Infect. 2015;70:3743. DOIPubMedGoogle Scholar
  5. Chen  M, Guo  Q, Wang  Y, Zou  Y, Wang  G, Zhang  X, et al. Shifts in the antibiotic susceptibility, serogroups, and clonal complexes of Neisseria meningitidis in Shanghai, China: a time trend analysis of the pre-quinolone and quinolone eras. PLoS Med. 2015;12:e1001838, discussion e1001838. DOIPubMedGoogle Scholar
  6. Lucidarme  J, Zhu  B, Xu  L, Bai  X, Gao  Y, González-López  JJ, et al. Genomic analysis of the meningococcal ST-4821 complex-Western clade, potential sexual transmission and predicted antibiotic susceptibility and vaccine coverage. PLoS One. 2020;15:e0243426. DOIPubMedGoogle Scholar
  7. Chen  M, Harrison  OB, Bratcher  HB, Bo  Z, Jolley  KA, Rodrigues  CMC, et al. Evolution of sequence type 4821 clonal complex hyperinvasive and quinolone-resistant meningococci. Emerg Infect Dis. 2021;27:111022. DOIPubMedGoogle Scholar
  8. Harrison  OB, Cole  K, Peters  J, Cresswell  F, Dean  G, Eyre  DW, et al. Genomic analysis of urogenital and rectal Neisseria meningitidis isolates reveals encapsulated hyperinvasive meningococci and coincident multidrug-resistant gonococci. Sex Transm Infect. 2017;93:44551. DOIPubMedGoogle Scholar
  9. Nadel  S, Kroll  JS. Diagnosis and management of meningococcal disease: the need for centralized care. FEMS Microbiol Rev. 2007;31:7183. DOIPubMedGoogle Scholar
  10. Bozio  CH, Isenhour  C, McNamara  LA. Characteristics of and meningococcal disease prevention strategies for commercially insured persons receiving eculizumab in the United States. PLoS One. 2020;15:e0241989. DOIPubMedGoogle Scholar
  11. Rosenstein  NE, Perkins  BA, Stephens  DS, Popovic  T, Hughes  JM. Meningococcal disease. N Engl J Med. 2001;344:137888. DOIPubMedGoogle Scholar
  12. Willerton  L, Lucidarme  J, Walker  A, Lekshmi  A, Clark  SA, Walsh  L, et al. Antibiotic resistance among invasive Neisseria meningitidis isolates in England, Wales and Northern Ireland (2010/11 to 2018/19). PLoS One. 2021;16:e0260677. DOIPubMedGoogle Scholar
  13. Willerton  L, Lucidarme  J, Walker  A, Lekshmi  A, Clark  SA, Gray  SJ, et al. Increase in penicillin-resistant invasive meningococcal serogroup W ST-11 complex isolates in England. Vaccine. 2021;39:271929. DOIPubMedGoogle Scholar
  14. Taha  MK, Vázquez  JA, Hong  E, Bennett  DE, Bertrand  S, Bukovski  S, et al. Target gene sequencing to characterize the penicillin G susceptibility of Neisseria meningitidis. Antimicrob Agents Chemother. 2007;51:278492. DOIPubMedGoogle Scholar
  15. Xu  L, Zhu  B, Xu  Z, Gao  Y, Shao  Z. Analysis on antibiotic susceptibility of Neisseria meningitidis isolates in China, 2003–2012 [in Chinese]. Dis Surveill. 2015;30:31620.
  16. Xu  L, Han  FY, Wu  D, Zhu  BQ, Gao  WY, Gao  Y, et al. [Analysis on antimicrobial sensitivity of Neisseria meningitidis in China from 2005 to 2019] [in Chinese]. Zhonghua Yu Fang Yi Xue Za Zhi. 2021;55:20711.PubMedGoogle Scholar
  17. Zhang  Y, Deng  X, Jiang  Y, Zhang  J, Zhan  L, Mei  L, et al. The epidemiology of meningococcal disease and carriage, genotypic characteristics and antibiotic resistance of Neisseria meningitidis isolates in Zhejiang Province, China, 2011–2021. Front Microbiol. 2022;12:801196. DOIPubMedGoogle Scholar
  18. Chen  M, Zhang  C, Zhang  X, Chen  M. Meningococcal quinolone resistance originated from several commensal Neisseria species. Antimicrob Agents Chemother. 2020;64:e0149419. DOIPubMedGoogle Scholar
  19. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 32nd ed. Supplement M100. Wayne (PA): The Institute; 2022.
  20. Bratcher  HB, Corton  C, Jolley  KA, Parkhill  J, Maiden  MC. A gene-by-gene population genomics platform: de novo assembly, annotation and genealogical analysis of 108 representative Neisseria meningitidis genomes. BMC Genomics. 2014;15:1138. DOIPubMedGoogle Scholar
  21. Jolley  KA, Bray  JE, Maiden  MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. DOIPubMedGoogle Scholar
  22. Demczuk  W, Sidhu  S, Unemo  M, Whiley  DM, Allen  VG, Dillon  JR, et al. Neisseria gonorrhoeae sequence typing for antimicrobial resistance, a novel antimicrobial resistance multilocus typing scheme for tracking global dissemination of N. gonorrhoeae strains. J Clin Microbiol. 2017;55:145468. DOIPubMedGoogle Scholar
  23. Nguyen  LT, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:26874. DOIPubMedGoogle Scholar
  24. Martin  DP, Murrell  B, Golden  M, Khoosal  A, Muhire  B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. DOIPubMedGoogle Scholar
  25. Lee  K, Nakayama  SI, Osawa  K, Yoshida  H, Arakawa  S, Furubayashi  KI, et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J Antimicrob Chemother. 2019;74:18129. DOIPubMedGoogle Scholar
  26. Van Esso  D, Fontanals  D, Uriz  S, Morera  MA, Juncosa  T, Latorre  C, et al. Neisseria meningitidis strains with decreased susceptibility to penicillin. Pediatr Infect Dis J. 1987;6:4389. DOIPubMedGoogle Scholar
  27. Richter  SS, Gordon  KA, Rhomberg  PR, Pfaller  MA, Jones  RN. Neisseria meningitidis with decreased susceptibility to penicillin: report from the SENTRY antimicrobial surveillance program, North America, 1998-99. Diagn Microbiol Infect Dis. 2001;41:838. DOIPubMedGoogle Scholar
  28. Bijlsma  MW, Bekker  V, Brouwer  MC, Spanjaard  L, van de Beek  D, van der Ende  A. Epidemiology of invasive meningococcal disease in the Netherlands, 1960-2012: an analysis of national surveillance data. Lancet Infect Dis. 2014;14:80512. DOIPubMedGoogle Scholar
  29. Lahra  MM, George  CRR, Shoushtari  M, Hogan  TR. Australian Meningococcal Surveillance Programme Annual Report, 2020. Commun Dis Intell (2018). 2021;45:45. DOIPubMedGoogle Scholar
  30. Deghmane  AE, Hong  E, Taha  MK. Emergence of meningococci with reduced susceptibility to third-generation cephalosporins. J Antimicrob Chemother. 2017;72:958. DOIPubMedGoogle Scholar
  31. Tomberg  J, Unemo  M, Davies  C, Nicholas  RA. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry. 2010;49:806270. DOIPubMedGoogle Scholar
  32. Nakayama  S, Shimuta  K, Furubayashi  K, Kawahata  T, Unemo  M, Ohnishi  M. New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic penA gene isolated in Japan. Antimicrob Agents Chemother. 2016;60:433941. DOIPubMedGoogle Scholar
  33. Li  J, Li  Y, Shao  Z, Li  L, Yin  Z, Ning  G, et al. Prevalence of meningococcal meningitis in China from 2005 to 2010. Vaccine. 2015;33:10927. DOIPubMedGoogle Scholar
  34. Mowlaboccus  S, Jolley  KA, Bray  JE, Pang  S, Lee  YT, Bew  JD, et al. Clonal expansion of new penicillin-resistant clade of Neisseria meningitidis serogroup W clonal complex 11, Australia. Emerg Infect Dis. 2017;23:13647. DOIPubMedGoogle Scholar
  35. Potts  CC, Retchless  AC, McNamara  LA, Marasini  D, Reese  N, Swint  S, et al.; Antimicrobial-Resistant Neisseria meningitidis Team. Antimicrobial-Resistant Neisseria meningitidis Team. Acquisition of ciprofloxacin resistance among an expanding clade of beta-lactamase positive, serogroup Y Neisseria meningitidis in the United States. Clin Infect Dis. 2021;73:118593. DOIPubMedGoogle Scholar
  36. Marín  JEO, Villatoro  E, Luna  MJ, Barrientos  AM, Mendoza  E, Lemos  APS, et al. Emergence of MDR invasive Neisseria meningitidis in El Salvador, 2017-19. J Antimicrob Chemother. 2021;76:11559. DOIPubMedGoogle Scholar
  37. Chinese Preventive Medicine Association. [Experts’ consensus on immunization with meningococcal vaccines in China] [in Chinese]. Zhonghua Liu Xing Bing Xue Za Zhi. 2019;40:1238.PubMedGoogle Scholar
  38. Xu  J, Chen  Y, Yue  M, Yu  J, Han  F, Xu  L, et al. Prevalence of Neisseria meningitidis serogroups in invasive meningococcal disease in China, 2010 - 2020: a systematic review and meta-analysis. Hum Vaccin Immunother. 2022;18:2071077. DOIPubMedGoogle Scholar
  39. Li  J, Shao  Z, Liu  G, Bai  X, Borrow  R, Chen  M, et al. Meningococcal disease and control in China: Findings and updates from the Global Meningococcal Initiative (GMI). J Infect. 2018;76:42937. DOIPubMedGoogle Scholar
  40. Chen  M, Rodrigues  CMC, Harrison  OB, Zhang  C, Tan  T, Chen  J, et al. Invasive meningococcal disease in Shanghai, China from 1950 to 2016: implications for serogroup B vaccine implementation. Sci Rep. 2018;8:12334. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: December 20, 2022
Page updated: January 21, 2023
Page reviewed: January 21, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external