Article DOI: <u>https://doi.org/10.3201/eid2904.221834</u> EID cannot ensure accessibility for supplementary materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

# Genomic Characterization of Respiratory Syncytial Virus during 2022–23 Outbreak, Washington, USA

Appendix

# Material and methods

## **RSV** genome sequencing

We extracted virus RNA by using the Quick-RNA Viral Kit (Zymo Research, https://www.zymoresearch.com). For samples with RSV PCR cycle threshold counts <25, virus genome sequencing was performed as previously described (1). In brief, we used the TURBO DNA-free Kit (ThermoFisher Scientific, https://www.thermofisher.com) to remove genomic DNA from extracted RNA. We performed first-strand cDNA synthesis by using random hexamers and SuperScript IV Reverse Transcriptase (ThermoFisher Scientific) and secondstrand synthesis by using Sequenase Version 2.0 DNA Polymerase (ThermoFisher Scientific). We purified double-stranded cDNA by using AMPure XP Magnetic Beads (Beckman Coulter, https://www.beckman.com) before proceeding to tagmentation and library preparation by using the Illumina DNA Prep, (S) Tagmentation kit (Illumina, https://www.illumina.com). For samples with RSV PCR threshold counts of 25–30, we used the RNA Prep with Enrichment, (L) Tagmentation and Respiratory Virus Oligos Panel v2 (Illumina) for library generation. DNA libraries were sequenced as 2 × 100-bp and 2 × 250-bp runs in a NextSeq500 sequencer (Illumina).

## **Bioinformatic analysis**

Quality of FastQ files was analyzed by using FastQC software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). RSV genome assembly was generated by using the Revica pipeline (https://github.com/greninger-lab/revica). Briefly, adaptor trimming and quality filtering was performed with Trimmomatic v0.39 (2). Mapping against a viral genome reference database was performed, followed by one round of mapping against the virus reference sequence with the highest median coverage (RSV-A reference, GenBank accession no. MZ516076.1; RSV-B reference, GenBank accession no. OK649754.1) and 2 iterations of mapping against the consensus reconstruction. Consensus genomes were generated by using a minimum base quality of 20, minimum depth of coverage of 5 times, and 60% allele frequency. Co-infection in a sample was indicated when 2 complete or partial consensus genomes of different virus species resulted from the Revica analysis.

Comparative analysis of nonsynonymous changes was performed by using consensus genome alignments that included genomes published in GenBank and GISAID (https://www.gisaid.org) with collection dates during January 2017–December 2022 (2,481 total genomes: 1,320 RSV-A and 1,161 RSV-B subtypes). Inclusion criteria comprised complete genomes from clinical isolates with >95% sequence coverage. Alignments were trimmed according to the open reading frame of the virus genes and translated with standard amino acid codes by using Aliview (*3*).

### Phylogenetic analysis

RSV genome alignments were built for each RSV subtype by using MAFFT software and visualized with Aliview (3,4). RSV genotyping was based on the *G* gene (5). The sequenced genomes were trimmed to the ectodomain of the *G* gene and analyzed with ReSVidex (https://cacciabue.shinyapps.io/resvidex) and corroborated by maximum-likelihood inference by using RSV-A and RSV-B reference alignments (5). *G* gene genotyping trees are available at https://github.com/greninger-lab/RSV-WA-2022. Genotype classification and sequences analyzed in this study are also available on the Nextstrain platform (https://nextstrain.org/rsv/a/G, https://nextstrain.org/rsv/b/G) (6).

In accordance with other RSV genotyping schemes, the sequences in this study would be classified as follows: lineage GA2.3.5 would be equivalent to ON1 (7), A23 (8), A.5.9 (9), and NA1 (10); lineage GA2.3.6b would be equivalent to ON1 (7), A23 (8), A.5.11 (9), and NA1 (10); lineage GB5.0.5a would be equivalent to BA9 (11), B6 (8), B.5.8 (9), and BA (12).

For comprehensive phylogenetic analyses, RSV genomes from clinical samples were downloaded from GenBank and GISAID databases if they had <5% N bases. Two phylogenetic analyses were performed: 1 analysis using all available RSV genomes (mentioned in the main

text as historical and recent RSV: 2,195 RSV-A and 1,711 RSV-B) and a reduced analysis that included RSV genomes with collection dates since 2017 (1,320 RSV-A and 1,161 RSV-B). Maximum-likelihood trees were inferred by using IQ-TREE v2.1 (*13*). The molecular evolution model was estimated by using ModelFinder (*14*), and the reliability of sequences clusters was evaluated by using UFBoot2 (10,000 replicates) (*15*). Complete RSV-A and RSV-B tree files and extended versions of the reduced trees (Figure, main text) are available at https://github.com/greninger-lab/RSV-WA-2022.

### Data availability

RSV consensus genomes are available in GenBank (accession nos. OP890312–50 and OP965698–712). Sequencing reads are available in NCBI BioProject no. PRJNA907066 (https://www.ncbi.nlm.nih.gov/bioproject). Line-item specimen data are available in the Appendix Table.

#### **GISAID** acknowledgment

We thank the authors from the originating laboratories responsible for obtaining the specimens and the submitting laboratories where genetic sequence data were generated and shared via the GISAID Initiative (Authors acknowledgment table available at https://github.com/greninger-lab/RSV-WA-2022).

#### References

- Goya S, Valinotto LE, Tittarelli E, Rojo GL, Nabaes Jodar MS, Greninger AL, et al. An optimized methodology for whole genome sequencing of RNA respiratory viruses from nasopharyngeal aspirates. PLoS One. 2018;13:e0199714. <u>PubMed https://doi.org/10.1371/journal.pone.0199714</u>
- Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. PubMed https://doi.org/10.1093/bioinformatics/btu170
- 3. Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–8. <u>PubMed https://doi.org/10.1093/bioinformatics/btu531</u>
- 4. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. <u>PubMed</u> https://doi.org/10.1093/molbev/mst010
- 5. Goya S, Galiano M, Nauwelaers I, Trento A, Openshaw PJ, Mistchenko AS, et al. Toward unified molecular surveillance of RSV: a proposal for genotype definition. Influenza Other Respir Viruses. 2020;14:274–85. <u>PubMed https://doi.org/10.1111/irv.12715</u>

- 6. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34:4121–3. <u>PubMed</u> https://doi.org/10.1093/bioinformatics/bty407
- 7. Eshaghi A, Duvvuri VR, Lai R, Nadarajah JT, Li A, Patel SN, et al. Genetic variability of human respiratory syncytial virus A strains circulating in Ontario: a novel genotype with a 72 nucleotide G gene duplication. PLoS One. 2012;7:e32807. <u>PubMed</u> <u>https://doi.org/10.1371/journal.pone.0032807</u>
- Ramaekers K, Rector A, Cuypers L, Lemey P, Keyaerts E, Van Ranst M. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol. 2020;6:veaa052.
   <u>PubMed https://doi.org/10.1093/ve/veaa052</u>
- 9. Chen J, Qiu X, Avadhanula V, Shepard SS, Kim DK, Hixson J, et al. Novel and extendable genotyping system for human respiratory syncytial virus based on whole-genome sequence analysis. Influenza Other Respir Viruses. 2022;16:492–500. <u>PubMed https://doi.org/10.1111/irv.12936</u>
- 10. Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Robles-Espinoza CD, Gómez-Leal G, Noyola DE. Respiratory syncytial virus A genotype classification based on systematic intergenotypic and intragenotypic sequence analysis. Sci Rep. 2019;9:20097. <u>PubMed</u> https://doi.org/10.1038/s41598-019-56552-2
- 11. Trento A, Viegas M, Galiano M, Videla C, Carballal G, Mistchenko AS, et al. Natural history of human respiratory syncytial virus inferred from phylogenetic analysis of the attachment (G) glycoprotein with a 60-nucleotide duplication. J Virol. 2006;80:975–84. <u>PubMed</u> <u>https://doi.org/10.1128/JVI.80.2.975-984.2006</u>
- Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Noyola DE. Respiratory syncytial virus B sequence analysis reveals a novel early genotype. Sci Rep. 2021;11:3452. <u>PubMed</u> <u>https://doi.org/10.1038/s41598-021-83079-2</u>
- 13. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE
  2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol
  Evol. 2020;37:1530–4. <u>PubMed https://doi.org/10.1093/molbev/msaa015</u>
- 14. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. <u>PubMed</u> <u>https://doi.org/10.1038/nmeth.4285</u>

15. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22. <u>PubMed</u> <u>https://doi.org/10.1093/molbev/msx281</u>

| Ap | oendix | Table. | Metadata | of sec | uenced | RSV | specimens* |
|----|--------|--------|----------|--------|--------|-----|------------|
|----|--------|--------|----------|--------|--------|-----|------------|

| Sequence name               | Collection date | RSV subtype | Ct    | Coverage† | Genbank no. | BioProject no.‡ | BioSample no.‡   | SRA fastq file‡            |
|-----------------------------|-----------------|-------------|-------|-----------|-------------|-----------------|------------------|----------------------------|
| hRSV/A/USA/202276NDB/2022   | 10–2022         | А           | 19.20 | 120.86    | OP890312    | PRJNA907066     | SAMN32118079     | SRR22580785                |
| hRSV/A/USA/2022FLDV8/2022   | 10-2022         | А           | 18.46 | 87.38     | OP890313    | PRJNA907066     | SAMN32118080     | SRR22580784                |
| hRSV/A/USA/2022R3AE2/2022   | 10-2022         | А           | 18.65 | 147.96    | OP890314    | PRJNA907066     | SAMN32118081     | SRR22580773                |
| hRSV/A/USA/2022AF7QA/2022   | 10-2022         | А           | 19.08 | 114.32    | OP890315    | PRJNA907066     | SAMN32118082     | SRR22580762                |
| hRSV/A/USA/2022LTGQ4/2022   | 10-2022         | А           | 19.27 | 119.10    | OP890316    | PRJNA907066     | SAMN32118083     | SRR22580751                |
| hRSV/A/USA/202226672/2022   | 10-2022         | А           | 20.46 | 130.82    | OP890317    | PRJNA907066     | SAMN32118084     | SRR22580740                |
| hRSV/B/USA/20229B2FA/2022   | 11–2022         | В           | 19.33 | 138.62    | OP890341    | PRJNA907066     | SAMN32118085     | SRR22580735                |
| hRSV/A/USA/20223TBF2/2022   | 10-2022         | А           | 19.19 | 141.67    | OP890318    | PRJNA907066     | SAMN32118086     | SRR22580734                |
| hRSV/A/USA/2022TQVY1/2022   | 11-2022         | А           | 18.78 | 148.55    | OP890319    | PRJNA907066     | SAMN32118087     | SRR22580733                |
| hRSV/A/USA/20229K9JE/2022   | 11-2022         | А           | 19.78 | 125.66    | OP890320    | PRJNA907066     | SAMN32118088     | SRR22580732                |
| hRSV/A/USA/20222G8K4/2022   | 10-2022         | А           | 17.13 | 65.64     | OP890321    | PRJNA907066     | SAMN32118089     | SRR22580783                |
| hRSV/A/USA/2022DT79D/2022   | 10-2022         | A           | 18 84 | 147 88    | OP890322    | PRJNA907066     | SAMN32118090     | SRR22580782                |
| hRSV/B/USA/20229BJQ7/2022   | 11-2022         | В           | 18.79 | 126.65    | OP890342    | PRJNA907066     | SAMN32118091     | SRR22580781                |
| hRSV/A/USA/202234AM6/2022   | 11-2022         | Ā           | 18 82 | 54 28     | OP890323    | PRJNA907066     | SAMN32118092     | SRR22580780                |
| hRSV/A/USA/2022YSFS7/2022   | 10-2022         | A           | 18 47 | 53.97     | OP890324    | PRJNA907066     | SAMN32118093     | SRR22580779                |
| hRSV/B/USA/2022A7421/2022   | 10-2022         | B           | 19.68 | 93.93     | OP890343    | PR.INA907066    | SAMN32118094     | SRR22580778                |
| hRSV/A/USA/2022PTFA0/2022   | 10-2022         | Ā           | 19 11 | 123 60    | OP890325    | PR.INA907066    | SAMN32118095     | SRR22580777                |
| hRS\//B/USA/2022KH4F2/2022  | 10-2022         | B           | 19.98 | 112 33    | OP890344    | PR.INA907066    | SAMN32118096     | SRR22580776                |
| hRSV/B/USA/2022RWW/YB/2022  | 10-2022         | B           | 18.00 | 115 10    | OP890345    | PR.INA907066    | SAMN32118097     | SRR22580775                |
| hRS\//A/USA/20227\/PLD/2022 | 10-2022         | Δ           | 18.83 | 86.18     | OP890326    | PR.INA907066    | SAMN32118098     | SRR22580774                |
| hRSV/A/USA/2022T3TPE/2022   | 10-2022         | Δ           | 19.00 | 85.36     | OP890327    | PR.INA907066    | SAMN32118099     | SRR22580772                |
| hRS\//4/US4/2022BARME/2022  | 11_2022         | Δ           | 17.20 | 126.03    | OP890328    | PR INA907066    | SAMN32118100     | SRR22580771                |
| hRS\//4/US4/20227321/2022   | 11_2022         | Δ           | 17.36 | 138 17    | OP890320    | PR INA907066    | SAMN32118101     | SRR22580770                |
| hRSV//B/USA/20228BLN0/2022  | 10_2022         | B           | 20.3  | 125 53    | OP800346    | PR INA007066    | SAMN32118102     | SPR22580760                |
| hRSV/B/USA/202200EIN9/2022  | 11_2022         | B           | 10.50 | 121.36    | 00030340    | PR INA007066    | SAMN32118103     | SRR22580768                |
| hps/////lis//2022EV07/2022  | 11 2022         | Δ           | 22.53 | 121.50    | 000330      |                 | SAMN32118104     | SPD22580767                |
| hps/////us//20222F1Q1/2022  | 10 2022         | A<br>       | 17.95 | 130.03    | OP800331    |                 | SAMN32110104     | SDD22580766                |
| hps/////us//202200230/2022  | 10-2022         | A<br>A      | 10.74 | 21 52     | OP800333    |                 | SAMN32118106     | SRR22300700<br>SPD22580765 |
| hps/////us//20220A120/2022  | 10-2022         | ~           | 19.74 | 21.55     | OP065712    |                 | SAMN32110100     | SRR22300703                |
| hps/////us//2022b3//lo/2022 | 11-2022         | A           | 20.2  | 10.49     | OF900712    |                 | SAIVIN32110107   | SRR22300704                |
|                             | 11-2022         | A           | 20.2  | 100.00    | OF090333    |                 | SAMN32110100     | SRR22300703                |
| 11K3V/A/USA/20229DGEF/2022  | 11-2022         | A           | 20.20 | 22.30     | OP090334    |                 | SAIVINJZ I 10109 | SKK22300701                |
| hps/////us//2022EJE/4/2022  | 11-2022         | A           | 17.09 | 101.00    | OF090333    |                 | SAIVIN32110110   | SRR22300700                |
| 11K3V/A/USA/2022F0KQ4/2022  | 11-2022         | A           | 17.00 | 101.39    | OP090330    | PRJINA907066    | SAIVIN32110111   | SRR22300739                |
| 11R3V/A/USA/20223B200/2022  | 11-2022         | A           | 19.40 | 10.19     | OP090337    |                 | SAIVIN32110112   | SKK22300757                |
| NRSV/B/USA/2022YVED3/2022   | 11-2022         | В           | 19.46 | 139.35    | OP890348    | PRJNA907066     | SAMN32118113     | SRR22580757                |
| NRSV/A/USA/202295L51/2022   | 10-2022         | A           | 19.80 | 138.35    | 0P890338    |                 | SAMN32118114     | SKK22580756                |
| hRSV/A/USA/2022JECVB/2022   | 10-2022         | A           | 19.58 | 79.68     | OP890339    | PRJNA907066     | SAMN32118115     | SRR22580755                |
| NRSV/B/USA/2022YFP3F/2022   | 10-2022         | В           | 19.09 | 111.2     | OP890349    | PRJNA907066     | SAMN32118116     | SRR22580754                |
| hRSV/B/USA/2022M4SWF/2022   | 10-2022         | В           | 18.65 | 103.76    | 0P890350    | PRJNA907066     | SAMN32118117     | SRR22580753                |
| hRSV/A/USA/2022AJXR3/2022   | 10-2022         | A           | 18.58 | 95.86     | 0P890340    | PRJNA907066     | SAMN32118118     | SRR22580752                |
| hRSV/B/USA/202177756/2021   | 08-2021         | В           | 19.4  | 355.53    | OP965698    | PRJNA907066     | SAMN32118119     | SRR22580750                |
| NKSV/B/USA/202196775/2021   | 09-2021         | В           | 22.9  | 19.97     | 02965699    | PRJNA907066     | SAMIN32118120    | SKK22580749                |
| nKSV/B/USA/2021189/4/2021   | 09-2021         | В           | 21.1  | 140.21    | 0P965700    | PRJNA907066     | SAMN32118121     | SKK22580748                |
| hRSV/B/USA/202131818/2021   | 09-2021         | В           | 22.5  | 43.97     | OP965701    | PRJNA907066     | SAMN32118122     | SRR22580747                |
| nKSV/B/USA/202134981/2021   | 09-2021         | В           | 23.9  | 238.93    | 0P965702    | PRJNA907066     | SAMN32118123     | SRR22580746                |
| hRSV/B/USA/202179926/2021   | 10-2021         | B           | 20.4  | 350.92    | OP965703    | PRJNA907066     | SAMN32118124     | SRR22580745                |
| hRSV/A/USA/202195752/2021   | 12–2021         | A           | 18.6  | 115.71    | OP965711    | PRJNA907066     | SAMN32118125     | SRR22580744                |
| hRSV/B/USA/202221067/2022   | 03–2022         | В           | 21.6  | 40.88     | OP965704    | PRJNA907066     | SAMN32118126     | SRR22580743                |

| Sequence name             | Collection date | RSV subtype | Ct   | Coverage† | Genbank no. | BioProject no.‡ | BioSample no.‡ | SRA fastq file‡ |
|---------------------------|-----------------|-------------|------|-----------|-------------|-----------------|----------------|-----------------|
| hRSV/B/USA/202210489/2022 | 02–2022         | В           | 28.3 | 5,147.37  | OP965708    | PRJNA907066     | SAMN32118130   | SRR22580738     |
| hRSV/B/USA/202275637/2022 | 02-2022         | В           | 26.5 | 2,371.03  | OP965709    | PRJNA907066     | SAMN32118131   | SRR22580737     |
| hRSV/B/USA/202188430/2021 | 12-2021         | В           | 30   | 241.61    | OP965710    | PRJNA907066     | SAMN32118132   | SRR22580736     |
| hRSV/B/USA/202194302/2021 | 08-2021         | В           | 27.2 | 2,773.8   | OP965705    | PRJNA907066     | SAMN32118127   | SRR22580742     |
| hRSV/B/USA/202114940/2021 | 09-2021         | В           | 25.8 | 1,3972.6  | OP965707    | PRJNA907066     | SAMN32118129   | SRR22580739     |
| hRSV/B/USA/202192941/2021 | 09-2021         | В           | 30   | 2,652.03  | OP965706    | PRJNA907066     | SAMN32118128   | SRR22580741     |

\*Ct, PCR cycle threshold; RSV, respiratory syncytial virus. †Average depth of sequencing coverage (x-fold). ‡NCBI BioProject, BioSample, and SRA (sequence read archive) accession numbers (https://www.ncbi.nlm.nih.gov).



**Appendix Figure 1.** Complete phylogenetic analysis of respiratory syncytial virus, subtype A. Maximumlikelihood trees were constructed by using complete genomes of RSV-A (collected during 2017–2022) downloaded from GenBank and GISAID (https://www.gisaid.org) databases. Phylogenetic associations of RSV-A genomes from our study are shown in boxes, which include bootstrap values for the main phylogenetic clades. Lineages GA2.3.5 and GA2.3.6b are labeled within their ancestral nodes. Collection years for specimens are depicted by tree branch color. RSV-A genomes from the United States are highlighted with light blue circles at branch tips. Washington RSV-A genomes from 2021–22 and 2022–23 outbreak seasons are highlighted in shades of green, and patient age groups are indicated by symbols. Scale bar indicates nucleotide substitutions per site. RSV-A, respiratory syncytial virus, subtype A.



**Appendix Figure 2.** Complete phylogenetic analysis of respiratory syncytial virus, subtype B. Maximumlikelihood trees were constructed by using complete genomes of RSV-B (collected during 2017–2022) downloaded from GenBank and GISAID (https://www.gisaid.org) databases. Phylogenetic association of RSV-B genomes from our study are shown in the box inset, which includes bootstrap values for the main phylogenetic clades. Lineage GB5.0.5a is labeled within its ancestral node. Collection years for specimens are depicted by tree branch color. RSV-B genomes from the United States are highlighted with light blue circles at branch tips. In the box inset, Washington RSV-B genomes from 2021–22 and 2022–23 outbreak seasons are highlighted in shades of orange, and patient age groups are indicated by symbols. Scale bar indicates nucleotide substitutions per site. RSV-B, respiratory syncytial virus, subtype B.