Genomic Characteristics of Emerging Intraerythrocytic *Anaplasma capra* and High Prevalence in Goats, China

Appendix

Appendix Table	1 Nucleotide sec	wence of primers	used in the study
Appendix Table	1. Nucleotide 360	fuction of primers	used in the study

	Primer		Annealing		
Target	name	Primer sequence (5'-3')	temperature (°C)	Amplicon size (bp)	References
rrs	Eh-out1	TTGAGAGTTTGATCCTGGCTCAGAACG	50	1500	(1)
	3–17U	WAAGGWGGTAATCCAGC			
gltA	Outer-f	GCGATTTTAGAGTGYGGAGATTG	55	1076	(2)
	Outer-r	TACAATACCGGAGTAAAAGTCAA			
	Inner-f	GGGTTCMTGTCYACTGCTGCGTG	51	792	(2)
	Inner-r	TTGGATCGTARTTCTTGTAGACC			
groEL	Forward	GCGAGGCGTTAGACAAGTCCATT	56	1264	(2)
	Reverse	TCCAGAGATGCAAGCGTGTATAG			
msp4	Forward	CAGTCTGCGCCTGCTCCCTAC	55	799	(2)
	Reverse	AGGAATCTTGCTCCAAGGTTA			
msp2	Forward	GCGTGTTGATGGCTCTGGT	51	1139	(2)
	Reverse	ACCAGTATCCTTATTTTTACC			
gltA*	Forward	CGAATCTATTTGCCTGCTT	60	200	This study
	Reverse	ATCGTAATTCTTGTAGACCCT			-

*This pair of primers is used for the quantitative PCR.

References

- Wen B, Jian R, Zhang Y, Chen R. Simultaneous detection of *Anaplasma marginale* and a new *Ehrlichia* species closely related to *Ehrlichia chaffeensis* by sequence analyses of 16S ribosomal DNA in *Boophilus microplus* ticks from Tibet. J Clin Microbiol. 2002;40:3286–90. <u>PubMed</u> <u>https://doi.org/10.1128/JCM.40.9.3286-3290.2002</u>
- 2. Li H, Zheng YC, Ma L, Jia N, Jiang BG, Jiang RR, et al. Human infection with a novel tick-borne Anaplasma species in China: a surveillance study. Lancet Infect Dis. 2015;15:663–70. <u>PubMed</u> <u>https://doi.org/10.1016/S1473-3099(15)70051-4</u>

Appendix Ta	ble 2.	Probe sec	uences of fluorescence	in situ h	ybridization	(FISH)
-------------	--------	-----------	------------------------	-----------	--------------	--------

Probe sequence (5' to 3')	Probe sequence name
TTCTGAGCCAGGATCAAACT	AC16S-1
TCGACTTGCATGTGTTAAGC	AC16S-2
AGCAAGCTACAGATTTGGTC	AC16S-3
CGTCTGCCACTAACCAAATC	AC16S-4
AGATTCCTATGCATTACTCA	AC16S-5
TGGCTATCCCATACTACTAG	AC16S-6
GGATTATACGGTATTACCCA	AC16S-7
ATAGCGATAAATCTTTCCCC	AC16S-8
CCAACTAGCTAATCCGACAT	AC16S-9
ACAGATCACTGCCTTGGTAG	AC16S-10
TGATCATCCTCTCAGACCAG	AC16S-11
CATTGTCCAATATTCCCCCAC	AC16S-12
CATAGCTGGATCAGGCTTGC	AC16S-13
TTTTACAACCCTAAGGCCTT	AC16S-14
TCATTATCTTCCCTACTGAA	AC16S-15
GGGACTTCTTCTGTAGGTAC	AC16S-16
CGCCCAATAATTCCGAACAA	AC165-10
ΤΤΑΛΟΤΤΑΟΟΑΛΑΛΟΟΑ	AC165-18
GTTAAGCCCTGGTATTTCAC	AC165-10
	AC165-20
	AC165-20 AC165-21
	AC165 22
	AC105-22
	AC105-23
	AC105-24
	AC105-25
	AC105-20
	AC105-27
	AC105-20
	AC105-29
	AC 105-30
ATCTAACCTCCATGTCAAGA	AC165-31
AACIGCGCCTTTCTGTTAAG	AC165-32
	AC165-33
	AC16S-34
AIGAGGGIIACGCICGIIGC	AC16S-35
	AC16S-36
CACCGGCAGTTTCCTTAAAG	AC16S-37
CGTGCTGACTTGACATCATC	AC16S-38
CATTGTAGCACGTGTGTAGC	AC16S-39
CGACGTTGCAACCTATTGTG	AC16S-40
CTTTTACGGATTAGCTCAGC	AC16S-41
CTCGAGTTGCAGAGGACAAT	AC16S-42
TCCACGATTACTAGCGATTC	AC16S-43
CGAGAACGTATTCACCGTGG	AC16S-44
TGACGGGCAGTGTGTACAAG	AC16S-45
TTTGAGTTAAGCCAATTCCC	AC16S-46
CACCGACCCAACCTTAAATG	AC16S-47
TACAGCTACCTTGTTACGAC	AC16S-48

	Strain (GenBank accession no.)								
	A. marginale str.								
	A. capra str. BIME1	A. capra str. BIME2	A. ovis str. Haibei	A. centrale str. Israel	Florida	A. platys str. S3	A. phagocytophilum		
Characteristic	(GCA_025628785.1)	(GCA_025628805.1)	(NZ_CP015994.1)	(NC_013532.1)	(NC_012026.1)	(NZ_CP046391.1)	str. JM (NC_021880)		
Size (bp)	1,066,874	1,059,758	1,214,674	1,206,806	1,202,435	1,196,811	1,481,598		
GC rate (%)	48.32	48.32	48.9	50.0	49.8	45.5	41.6		
Gene counts (n)	929	932	1021	993	992	940	1155		
CDS counts (n)	862	863	945	922	913	882	997		
Pseudogenes (n)	27	29	32	27	35	17	114		
rRNAs (n)	3	3	3	3	3	3	3		
tRNAs (n)	37	37	37	37	37	34	37		
Completeness (%)	99.79	99.36	NA	NA	NA	NA	NA		

Appendix Table 3. Genomic characteristics of Anaplasma capra strains BIME1 and BIME2 compared with that of representative Anaplasma species strains*

*bp, base pair; CDS, coding sequence; rRNA, ribosomal ribonucleic acid; tRNA, transfer ribonucleic acid; NA, not applicable.

Appendix Table 4. The estimated values of average nucleotide identity (ANI) and DNA-DNA hybridization (DDH) between
Anaplasma capra and the other Anaplasma species

_	A	NI	DDH		
Species	A. capra str. BIME1	A. capra str. BIME2	A. capra str. BIME1	A. capra str. BIME2	
A. ovis	78.0783	78.0878	17.4	17.5	
	(GCA_002849345.1)	(GCA_002214625.1)	(GCA_002849345.1)	(GCA_002849345.1)	
A. marginale	78.2897	77.9471	17.9	17.9	
	(GCA_008801305.1)	(GCA_000020305.1)	(GCA_000172475.1)	(GCA_000172475.1)	
A. centrale	77.9688	77.8613	17.4	17.4	
	(GCA_000024505.1)	(GCA_000024505.1)	(GCA_000024505.1)	(GCA_000024505.1)	
A. phagocytophilum	(-)	(-)	13.0	13.0	
			(GCA_023476575.1)	(GCA_023278635.1)	
A. platys	(-)	(-)	13.1	13.1	
			(GCA_012790675.1)	(GCA_012790675.1)	

Appendix Table 5. Virulence genes in Anaplasma capra str. BIME1 and BIME2

		GenBank accession number		
Gene	Description	A. capra str. BIME1	A. capra str. BIME2	
virB2	type IV secretion system protein VirB2 family	MCU7611221.1	MCU7612774.1	
		MCU7611222.1	MCU7612775.1	
		MCU7611775.1	MCU7612776.1	
		MCU7611780.1		
		MCU7611781.1		
		MCU7611782.1		
virB3	type IV secretion system protein VirB3	MCU7611541.1	MCU7612020.1	
virB4	type IV secretion system protein VirB4 family	MCU7611542.1	MCU7612019.1	
		MCU7611779.1	MCU7612773.1	
virB6	type IV secretion system protein VirB6 family	MCU7611543.1	MCU7612018.1	
		MCU7611544.1	MCU7612017.1	
		MCU7611545.1	MCU7612016.1	
		MCU7611546.1	MCU7612015.1	
virB7	type IV secretion system protein VirB7	MCU7611364.1	MCU7612438.1	
virB8	type IV secretion system protein VirB8 family	MCU7611203.1	MCU7612293.1	
		MCU7611581.1	MCU7611980.1	
virB9	type IV secretion system protein VirB9 family	MCU7611202.1	MCU7612294.1	
		MCU7611762.1	MCU7612488.1	
virB10	type IV secretion system protein VirB10	MCU7611201.1	MCU7612295.1	
virB11	type IV secretion system ATPase VirB11	MCU7611200.1	MCU7612296.1	
virD4	type IV secretion system component VirD4	MCU7611199.1	MCU7612297.1	
Ats-1	Anaplasma T4SS translocated substrate-1	MCU7611426.1	MCU7612135.1	
ompA	outer membrane protein OmpA	MCU7611514.1	MCU7612047.1	
Asp14	14-kDa <i>Anaplasma</i> surface protein Asp14	MCU7611843.1	MCU7612563.1	

Appendix Table 6. Genes predicted to be unique in Anaplasma capra str. BIME1 and BIME2

Gene	Protein	F	unction
menA	1,4-dihydroxy-2-naphthoate polyprenyltransferase	Metabolic processing	Menaquinone (vitamin K2) biosynthesis
unknown <i>MKK</i> 9	Glycosyltransferase 2 family protein Mitogen-activated protein kinase kinase 9		Glycan metabolism Ethylene and camalexin biosynthesis
MqnX CPS1 atuF Zbtb46	Aminodeoxyfutalosine deaminase Peregrinol diphosphate synthase Geranyl-CoA carboxylase α subunit Zinc finger and BTB domain-containing protein	Genetic information	Menaquinone Biosynthesis Metabolism Geraniol degradation Transcription factor
UFL1 Hmbox1 RSF1 Ara54	46 E3 UFM1-protein ligase 1 Homeobox-containing protein 1 Remodeling and spacing factor 1 E3 ubiquitin-protein ligase	processing	Cellular regulation Transcription factor DNA repair Cellular regulation

Gene	Protein		Function
MACC1	Metastasis-associated in colon cancer protein 1	Signaling and cellular processing	Signaling regulator
dia	Diaphanous protein		Cytokinesis
desK	Membrane-associated kinase DesK		Membrane-associated kinase
hbhA	Heparin binding hemagglutinin		Virulence factor
Mrgprg	Mas-related G protein-coupled receptor member G		G protein-coupled receptor
unknown	Membrane protein		Protein with domain of unknown function
unknown*	unclassified protein	Func	tion unknown
*Including 37 ur	nclassified genes.		

Appendix Table 7. Functional Clusters of Orthologous Groups of protein-coding genes from the representative *Anaplasma* species strains

		A	A	Antia	Assertusia	A	A	A when we as the while we
	Europhian al	A. capra	A. capra	A. OVIS	A. centrale	A. marginale	A. platys	A. pnagocytopnilum
Cotogony	Functional	SUL DIVIE I	SU. DIVIEZ	str. naibei	Str. Israel	Str. Florida	Str. 55	SUL JIVI
Category	category	4	4	4		genes	4	4
A	RNA	1	1	1	1	1	1	1
	processing and							
-	modification	•	•	•	0	•	0	•
В	Chromatin	0	0	0	0	0	0	0
	structure and							
-	dynamics							
С	Energy	67	67	74	70	68	71	74
	production and							
_	conversion							
D	Cell cycle	16	15	18	17	18	11	14
	control, cell							
	division,							
	chromosome							
	partitioning							
E	Amino acid	31	31	35	34	35	30	25
	transport and							
	metabolism							
F	Nucleotide	54	54	55	54	54	52	56
	transport and							
	metabolism							
G	Carbohydrate	21	20	26	26	25	27	22
	transport and							
	metabolism							
Н	Coenzyme	65	65	67	64	66	58	68
	transport and							
	metabolism							
1	Lipid transport	28	28	30	29	28	29	29
	and metabolism							
J	Translation	126	127	131	130	130	128	137
•	ribosomal							
	structure and							
	hiogenesis							
к	Transcription	18	17	21	20	21	10	21
	Replication	52	53	53	54	52	51	57
L	recombination	52	00	00	54	52	51	51
	and repair							
M	Coll	19	47	62	59	60	35	62
IVI	wall/mombrane/	40	47	02	50	00	35	02
	biogonogia							
N	Diogenesis	0	0	0	0	0	0	0
N		2	2	2	2	2	2	2
0		44	44	43	43	43	43	45
	al modification,							
	protein							
	turnover,							
	chaperones							

		A. capra	A. capra	A. ovis	A. centrale	A. marginale	A. platys	A. phagocytophilum	
	Functional	str. BIME1	str. BIME2	str. Haibei	str. Israel	str. Florida	str. S3	str. JM	
Category	category		Number of genes						
Р	Inorganic ion	31	31	36	35	34	35	34	
	transport and								
	metabolism								
Q	Secondary	12	12	12	12	12	11	12	
	metabolites								
	biosynthesis,								
	transport and								
_	catabolism								
R	General	0	0	0	0	0	0	0	
	function								
•	prediction only								
S	Function	90	91	89	91	92	83	88	
-	unknown	•	•	10	40	40	10	•	
I	Signal	9	9	10	10	10	10	9	
	transduction								
	mecnanisms	00	00	00	00	00	40	40	
U	Intracellular	38	38	38	38	38	40	40	
	tranicking,								
	secretion, and								
	transport								
V	Dofonso	4	1	1	1	٨	4	Λ	
v	mochanisms	4	4	4	4	4	4	4	
\ M /	Extracellular	0	0	0	0	0	0	0	
••	structures	0	0	0	0	0	0	U	
x	Mohilome	0	0	0	0	0	0	0	
~	nronhages	0	0	0	0	0	0	0	
	transposons								
Y	Nuclear	0	0	0	0	0	0	0	
	structure	Ŭ	Ũ	ů,	č	č	Ŭ	Ŭ	
Z	Cytoskeleton	0	0	0	0	0	0	0	

Appendix Table 8. The Anaplasma capra-positive numbers of goats and Hae. Longicornis in this study by PCR toward different

gene loci

	Goats from	Goats from	Hae. longicornis from	Hae. longicornis
Gene loci	Shandong	Guizhou	Shandong	from Guizhou
No. of tested	54	18	144	57
16S rRNA、gltA、groEL、msp4(+)	14	1	0	0
16S rRNA、gltA、msp4(+)	4	4	0	3
16S rRNA、 <i>gltA、groEL</i> (+)	1	0	0	0
gltA、groEL、msp4(+)	7	2	0	0
16S rRNA、 <i>gltA</i> (+)	1	0	0	0
gltA、msp4(+)	0	5	3	2
gltA(+)	2	2	4	4

Appendix Figure 1. The sampling sites where ticks and blood samples were collected in this study. Different color and marks represent the types of samples collected in different areas. The flags indicate the locations, where the goat blood samples were collected for next-generation sequencing of *Anaplasma capra* genomes.

Appendix Figure 2. The comparison between each *gltA* gene sequences of *Anaplasma capra* this study and sequence from human. The upper right part represents the number of bases that differ from each sequence and the lower left part represents the nucleotide identity (%) between each sequence from others.

	HL	A SDI	Goat 3	Goat A	Goat SD-5	Goat SD-b	Goat	Goat 9	Goat SD-1	DGoat SD-1	SD-1	SDI	SDI	SDI	SD-19	elGoat SD-2	olGoat SD-2	1Goat SD-2	LIGORI SD-2	blooat SD-2	SD-2	SD-2	SD-20	GOat 3	GOat	GL-11G	oat
KM206275 HLJ-14		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974521 SD-1/Goat	100		0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974522 SD-3/Goat	100	100		0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974523 SD-4/Goat	100	100	100		0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974524 SD-5/Goat	100	100	100	100		5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974525 SD-6/Goat	100	99.6	99.6	99.6	99.6		5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	7	5	5	
OP974526 SD-7/Goat	100	100	100	100	100	99.6		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974527 SD-9/Goat	100	100	100	100	100	99.6	100		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974528 SD-12/Goat	100	100	100	100	100	99.6	100	100		0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974529 SD-13/Goat	100	100	100	100	100	99.6	100	100	100		0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974530 SD-14/Goat	100	100	100	100	100	99.6	100	100	100	100		0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974531 SD-15/Goat	100	100	100	100	100	99.6	100	100	100	100	100		0	0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974532 SD-16/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100		0	0	0	0	0	0	0	0	0	0	2	0	0	
OP974533 SD-17/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100		0	0	0	0	0	0	0	0	0	2	0	0	
OP974534 SD-18/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100		0	0	0	0	0	0	0	0	2	0	0	
OP974535 SD-20/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100		0	0	0	0	0	0	0	2	0	0	
OP974536 SD-21/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100		0	0	0	0	0	0	2	0	0	
OP974537 SD-22/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100		0	0	0	0	0	2	0	0	
OP974538 SD-23/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100		0	0	0	0	2	0	0	
OP974539 SD-25/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100	100		0	0	0	2	0	0	
OP974540 SD-26/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100		0	0	2	0	0	
OP974541 SD-27/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		0	2	0	0	
OP974542 SD-29/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100		2	0	0	
OP974582 GZ-3/Goat	99.8	99.8	99.8	99.8	99.8	99.4	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8		2	2	
OP974583 GZ-5/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99.8	1.1	0	
OP974584 GZ-11/Goat	100	100	100	100	100	99.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	99.8	100		

Appendix Figure 3. The comparison between each *groEL* gene sequences of *Anaplasma capra* this study and sequence from human. The upper right part represents the number of bases that differ from each sequence and the lower left part represents the nucleotide identity (%) between each sequence from others.

Appendix Figure 4. The comparison between each 16S rRNA gene sequences of *Anaplasma capra* this study and sequence from human. The upper right part represents the number of bases that differ from each sequence and the lower left part represents the nucleotide identity (%) between each sequence from others.

Appendix Figure 5. The comparison between each *msp4* gene sequences of *Anaplasma capra* this study and sequence from human. The upper right part represents the number of bases that differ from each sequence and the lower left part represents the nucleotide identity (%) between each sequence from others.