
Each year in the United States, >800 foodborne 
outbreaks are reported, causing >14,000 illnesses 

and >800 hospitalizations (1–3). Foodborne outbreaks 
range from small, localized outbreaks, such as those 
associated with a locally contaminated meal shared 
by family or friends, to large, multistate outbreaks as-
sociated with a contaminated food that is widely dis-
tributed. Selection and information biases, pathogen 
testing methods, and outbreak size can affect detec-
tion, investigation, and reporting (4). However, few 
methods are available to estimate the extent of out-
break underdetection and underreporting.

Outbreaks can be considered natural occurrences 
with a mathematical relationship between frequency 
and size. Several studies have used a power law dis-
tribution, where one variable is proportional to the 
power of another, to help describe disease outbreaks 
or transmission (5–9). We examined the mathemati-
cal relationship between foodborne outbreak fre-
quency and size to estimate the number of expected 
outbreaks of different sizes, comparing power law, 
log-normal, and exponential distributions by using 
censored and complete data to clarify underdetection 
and underreporting.

The Study
Local, state, and federal public health agencies in 
the United States identify and investigate foodborne 

outbreaks and report them to the Foodborne Dis-
ease Outbreak Surveillance System (FDOSS; https://
www.cdc.gov/fdoss). In FDOSS, a foodborne out-
break is defined as >2 similar illnesses associated 
with a common food source. We used FDOSS data 
from 1998–2019 and defined outbreak size as the 
number of laboratory-confirmed cases. We also in-
cluded outbreaks with >2 similar illnesses that had 
only 1 confirmed case. We evaluated the fit of power 
law, log-normal, and exponential distributions by ap-
plying the Kolmogorov-Smirnov (KS) statistic (10) to 
the number of outbreaks by size.

We estimated medians and 90% credible inter-
vals (CrIs) for the minimum threshold, slope, and 
difference between expected and actual outbreak fre-
quency by bootstrapping 5,000 random samples with 
replacement from the dataset of all outbreaks of the 
same size. We defined outbreaks of <10 confirmed 
cases as small and outbreaks of >100 confirmed 
cases as large. We conducted all analyses in R (The 
R Foundation for Statistical Computing, https://
www.r-project.org) by using the poweRlaw package 
version 0.70.6 (11). We provide additional methods 
and R script (Appendix 1, https://wwwnc.cdc.gov/
EID/article/30/2/23-0342-App1.pdf) and the dataset 
used (Appendix 2, https://wwwnc.cdc.gov/EID/
article/30/2/23-0342-App2.xlsx).

During 1998–2019, a total of 10,026 foodborne 
outbreaks were reported in the United States, ranging 
from 1 to 1,500 laboratory-confirmed cases. The data 
appeared linear on a log-log scale, consistent with a 
power law distribution (Figure 1, panel A). We rejected 
the exponential and log-normal distributions because 
they fit poorly based on the KS statistic (exponential 
0.109, p<0.001; log-normal 0.0101, p<0.001). The power 
law distribution fit the data (KS = 0.00985, p = 0.15).

Foodborne outbreaks with >4 (90% CrI 4–8) cases 
followed a power law distribution of α = 2.15 (90% 
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We fit a power law distribution to US foodborne disease 
outbreaks to assess underdetection and underreporting. 
We predicted that 788 fewer than expected small out-
breaks were identified annually during 1998–2017 and 
365 fewer during 2018–2019, after whole-genome se-
quencing was implemented. Power law can help assess 
effectiveness of public health interventions.
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CrI 2.12–2.19) (Figure 2). We estimated 718 (90% CrI 
594–783) fewer than expected small outbreaks and 
0.4 (90% CrI −0.07–0.9) fewer than expected large 
outbreaks occurred annually, representing 841 (90% 
CrI 669–932) fewer than expected small outbreak- 
associated illnesses and 574 (90% CrI 325–871) fewer 
than expected large outbreak-associated illnesses.

By 2018, most US public health laboratories were 
using whole-genome sequencing (WGS) to subtype 
some bacteria that cause foodborne illness, including 

Salmonella enterica, Escherichia coli, and Listeria mono-
cytogenes. WGS has helped public health practitioners 
detect more outbreaks and determine the food or oth-
er source while outbreaks are still small (12).

A power law distribution fit the outbreak data for 
both the 1998–2017 (8,993 outbreaks; KS = 0.00949, p = 
0.37) and the 2018–2019 (1,033 outbreaks; KS = 0.0211, 
p = 0.43) periods (Figure 1, panel B). The minimum 
threshold was >5 cases (90% CrI 4–9) and α = 2.20 
(90% CrI 2.16–2.25) during 1998–2017, compared with 
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Figure 1. Log-log scale of foodborne outbreak size versus frequency from a power law for estimating underdetection of foodborne 
disease outbreaks, United States. A) Actual (black points) versus expected from the power law distribution (gray line) 1998–2019; B) 
actual (blue points) versus expected (light blue line) 1998–2017 and actual (red points) versus expected (light red line) 2018–2019. 
Estimates for the difference between the number of expected and actual small (<10 cases) and large (>100 cases) outbreaks were 
calculated by the sum of the differences between each of the relevant actual points and the expected line at the same x-value. Annual 
estimates were then calculated by dividing the number of years represented.

Figure 2. Parameter estimates from a power law for estimating underdetection of foodborne disease outbreaks, United States. Graphs 
display distribution of foodborne outbreak size and frequency for the minimum threshold (A) and slope (B) for outbreaks during 1998–
2019. Black lines represent bootstrapped parameter estimate; red lines represent 90% credible intervals. 
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a minimum threshold of >3 cases (90% CrI 2–6) and 
α = 1.91 (90% CrI 1.83–2.00) during 2018–2019. We 
estimate 788 (90% CrI 665–888) fewer than expected 
small outbreaks and 0.4 (90% CrI −0.06 to 0.9) fewer 
than expected large outbreaks were identified annu-
ally during 1998–2017, compared with 365 (90% CrI 
277–475) fewer than expected small outbreaks and 1 
(90% CrI −3 to 2) more than expected large outbreak 
annually during 2018–2019.

Conclusions
We found that foodborne disease outbreak data fit a 
power law distribution. On the basis of that finding, 
we quantified the unobserved burden of foodborne 
outbreaks in the United States during 1998–2019, pre-
dicting that 718 fewer than expected small outbreaks 
are detected, investigated, and reported every year 
and 1 fewer than expected large outbreak was detect-
ed and reported about every 3 years. Detection and 
reporting of foodborne outbreaks have improved; 
during 2018–2019, we estimate that underreporting 
of small outbreaks decreased by 54% (365/year) com-
pared with 1998–2017 (788/year). The power law dis-
tribution quantifies improvements in detection and 
reporting, which could in part be explained by WGS.

Many factors affect outbreak and case detection, 
investigation, and reporting, including whether the 
outbreak is caused by a common molecular strain, how 
many persons ate the contaminated food, clinical man-
ifestations, care-seeking, diagnostic testing, and labo-
ratory or health department outbreak investigation 
and response capacity. Natural limitations to outbreak 
size are also likely, including the geographic distribu-
tion of a contaminated food product, food safety poli-
cies that control contamination in the food system, and 
product recalls or other disease control efforts that end 
large outbreaks before natural limitations are reached.

Power law distribution parameters should be 
stable over time, but changes in the slope or mini-
mum threshold or deviations from the estimated 
power law might indicate perturbations of concern. 
Understanding the different power law parameters 
that underlie outbreak size and frequency can also 
be useful for exploring how detection of foodborne 
outbreaks differs by pathogen or food vehicle. In ad-
dition, those parameter changes can reflect public 
health interventions.

The power law distribution has applications be-
yond foodborne outbreaks and has been applied to 
COVID-19, measles, and gonorrhea (5–9). By predict-
ing outbreak frequency and the extent of underdetec-
tion, we can plan outbreak response needs for routine 
and surge scenarios, assess the effects of outbreak 

prevention efforts, and improve estimates of the 
proportion of illnesses that are outbreak-associated  
versus sporadic.

A limitation of this analysis is that failure to statisti-
cally reject the power law distribution does not ensure 
that the data follow a power law. The KS statistic also 
might miss systematic patterns that differ between dis-
tributions because it uses only the largest difference. 
However, we used a hypothesis-driven rationale to cen-
sor data by establishing a minimum threshold, tested 
alternative distributions, and characterized uncertainty 
by using the bootstrap. Another limitation is that we 
only include reported outbreaks with laboratory con-
firmed cases, which could underestimate cases but also 
reduces variation from comparing across multiple types 
of outbreaks. Laboratory-confirmed cases also could be 
an underestimate for the largest outbreaks because pub-
lic health laboratories might run out of resources to sub-
type patient samples or be faced with other constraints 
due to the overwhelming size of the outbreak.

In conclusion, we used the power law distribu-
tion on foodborne disease outbreak data to quan-
tify underdetection and how foodborne disease 
reporting has improved. The improvement in un-
derdetection during 2018–2019 could in part be 
explained by improved detection or investigation 
from the implementation of WGS. The power law 
distribution can be used to assess the impact of past 
and future public health interventions and as a tool 
for resource planning.
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