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A One Health Perspective on Salmonella 
enterica Serovar Infantis, the Emerging 
Human Multidrug-Resistant Pathogen 

Appendix 1 

Methods 

Isolate selection 

Enterobase was searched on the 19th of February 2018, and all isolates belonging to 

eBG31 with sequence data available in the short read archive (SRA) were included; due to the 

computational cost of including more sequences we chose to not include isolates after this cutoff 

(1). All UK Health Security Agency (UKHSA) eBG31 sequence data reported by 31st of 

December 2020 was downloaded from the UKHSA Pathogens BioProject at NCBI 

(PRJNA248792). Sequence data for 62 Animal and Plant Health Agency (APHA) S. Infantis 

isolates were downloaded from the SRA on 28th of May 2019. 

DNA of S. Infantis isolates was shared for sequencing by the APHA, UKHSA and 

National Institute of Communicable Diseases (NICD), South Africa. The APHA isolates 

included had been collected for surveillance up until March 2018. Strains, isolated between 2000 

and 2014, were selected from the UKHSA culture store; ensuring that there was an even 

distribution by time and, if applicable, continent of travel. Strains isolated between 2004 and 

2016 were selected from the NICD culture store for sequencing. 

The metadata available was used to stratify the isolates into the following source groups: 

human, food, poultry, poultry products, animal feed, other animals, environmental and unknown 

(Appendix 2 Table 1). All clinical isolates and those with metadata on patient age or gender were 
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classified as human. Isolates from chickens, ducks, turkeys and quail were categorised as 

poultry. All strains from poultry products, such as eggs and chicken meat, were grouped 

together. Isolates from all other animals were grouped into ‘other animals’ and non-poultry 

animal products and other food samples were grouped into ‘food’. All samples from animal feed 

were grouped and farm swabs, soil, water, air and sewage were designated environmental. 

Isolates missing source information to assign to these groups were classed as unknown. For the 

UKHSA isolates with travel history information, the continent of travel was used to designate the 

continent of isolate origin. The world map plot was generated with R (v.4.1.0) and the package 

ggplot2 (v.3.3.6) (2,3). 

Whole Genome Sequencing 

DNA from the NICD isolates was extracted using QIAamp DNA Mini Kit (Qiagen) and 

sequenced as described in Mattock et al., 2021 (4); libraries were prepared using either Illumina 

Nextera XT library preparation kits or using a custom library preparation method described in 

Rasheed et al., 2020 (5). Twelve NICD isolates not used in Mattock et al., 2021 are included 

here and a library was prepared using one of the aforementioned methods and sequenced on an 

Illumina NextSeq 500. 

The DNA of the UKHSA samples was extracted using the Qiasymphony DSP DNA Midi 

Kit (Qiagen), following a protocol described in Nair et al., 2016 (6). The historical UKHSA 

samples, described in Lee et al., 2021, were also sequenced using either Illumina Nextera XT or 

the custom library preparation methods (7). Two additional historical UKHSA samples were 

included and sequenced using the custom library preparation method. The contemporary 

UKHSA samples were prepared using the Illumina Nextera XT protocol and sequenced on an 

Illumina HiSeq 2500 instrument. 

DNA from the APHA isolates was extracted using the MagMAX CORE Nucleic Acid 

Purification Kit (ThermoFisher) with a KingFisher Flex Purification System (ThermoFisher). 

The DNA was then sequenced using the custom library preparation method and an Illumina 

NextSeq 500. 

Phylogenetic analysis 

All the sequence data generated by UKHSA were trimmed using Trimmomatic (v0.27) 

with leading and trailing at <Q30 (8). All other sequence data were trimmed with Trimmomatic 
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(v0.36) and the same options. Sequence type and eBG were determined for each isolate using 

Metric-Oriented Sequence Typer (MOST) (v.1.0) with a UKHSA Salmonella database (9,10). 

The quality of borderline sequence typing was assessed using Tablet (11). 

Using the Cloud Infrastructure for Big Data Microbial Bioinformatics (12), each sample 

was mapped and variant called against the eBG31 reference CP070301 (7), using Snippy 

(v.4.6.0) with the options minfrac 0.9 and 30 (13). Due to the large number of sequences 

included, it was not computationally possible to produce a phylogeny including all of the 

isolates. Therefore, the SNP distance between all of the consensus FASTAs produced by Snippy 

was calculated using snp-dists (v.0.7) (https://github.com/tseemann/snp-dists) with the -m option 

to output in the molten format. Using MCL (v14–137) and the abc option, Markov clustering 

was performed on the pairwise SNP distance matrix with the following SNP distance thresholds: 

0-SNPs, 5-SNPs, 10-SNPs, 25-SNPs, 50-SNPs, 100-SNPs and 250-SNPs (10,14). This resulted 

in clusters where each cluster member was less than ‘n’ SNPs from another member. The 

smallest SNP threshold that it was possible to generate a phylogeny with was 25-SNPs; the first 

isolate in each 25-SNP cluster was chosen to be the representative for that cluster. 

The eBG31 reference genome, CP070301, was screened for prophages using PHASTER 

(7,15). Four complete prophages were identified and masked by Snippy when producing an 

alignment of the 25-SNP cluster representatives. The whole genome alignment was used by 

Gubbins (v.2.4.1) to identify recombination which was then removed during core-SNP alignment 

generation (16). A core SNP maximum likelihood phylogeny of the 25-SNP cluster 

representatives, excluding the reference isolate, was constructed using RaxML (v.8.2.12), rooted 

to its most ancestral node and annotated using iToL (17,18). Hierarchical Bayesian clustering 

within the phylogeny was identified using fastbaps (v.1.0.5) with ape (v.5.3) and R (v.3.4.1), 

with the optimised symmetric prior and k.init at 5 (2,19,20). Pairwise SNP distances were 

calculated using the snp-dists output, with self against self comparisons excluded. 

The treedater relaxed clock test was performed to determine support for using a strict 

clock; the strict clock was deemed the best approach (21). Treedater (v.0.5.0) was used with a 

strict clock and the dates ranges of the isolates in each 25-SNP cluster, excluding leaves with an 

unknown isolation date, to date the phylogeny. Phangorn (v.2.10.0) was used to identify the 

nodes where the clades diverged (22). 
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AMR and plasmid determination 

ARIBA (v.2.10.1) was used with the ResFinder and Plasmidfinder databases 

(downloaded 17th January, 2022) to identify AMR determinants and plasmids (23–25). A 

database of gyrA, gyrB, parC and parE, from the S. Typhimurium LT2 reference, was used with 

ARIBA to identify mutations within the Quinolone Resistance Determining Regions (QRDR). 

MDR, resistance to three or more antimicrobial classes, was calculated using AMR genes 

identified by ARIBA and mutations in QRDRs. As aminoglycoside resistance in Salmonella is 

rarely conferred by aac(6’)-Iaa it was excluded from all calculations (26). pESI presence was 

determined by mapping each sequence against a pseudomolecule of the eBG31 reference 

(CP070301) and pESI contigs (ASRF01000099-ASRF01000108) with SMALT (v.0.7.6) and 

calculating coverage with Samtools (v.1.5) (27,28). Heatmaps were generated using phytools 

(v.0.6) and data.table (v.1.11.8) (29,30). 

The proportion of isolates containing each AMR determinant and plasmid from each 

metadata group was calculated in R (v.4.1.0) with the packages janitor (v.2.1.0), tidyr (v.1.1.3) 

and magrittr (v.2.0.1) (31–33). The heatmap was created in R with ape and gplots (v3.1.3) (34). 
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Appendix 1 Figure 1. Frequency of S. Infantis each year. Number of S. Infantis strains included in the 

dataset from 1989 to 2020. 
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Appendix 1 Figure 2. Maximum likelihood cladogram of S. Infantis. Core SNP maximum likelihood 

cladogram of 1288 representatives of 5283 S. Infantis isolates. The ring around the cladogram is 
annotated with the Bayesian hierarchical clusters found by fastbaps. Bayesian hierarchical clusters: A, 

348 representatives of 1624 isolates; B, 831 representatives of 3283 isolates and C 109 representatives 

of 376 isolates. 
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Appendix 1 Figure 3. Maximum likelihood phylogeny of S. Infantis with ST. Core SNP maximum 

likelihood phylogeny of 1288 representatives of 5283 S. Infantis isolates. The clusters in the phylogeny 

are annotated with the Bayesian hierarchical clusters found by fastbaps. The outer ring shows the 

percentage of isolates in each 25SNP cluster that belonged to each ST. Bayesian hierarchical clusters: A, 
348 representatives of 1624 isolates; B, 831 representatives of 3283 isolates and C 109 representatives 

of 376 isolates. STs: 32 (n = 5204), 2283 (n = 36), 2780 (n = 1), 2181 (n = 1), 3756 (n = 2), 3277 (n = 1), 

2146 (n = 26), 2937 (n = 2), 3815 (n = 3), 3870 (n = 1), 3854 (n = 1), 4196 (n = 1), 4366 (n = 1), 7759 (n = 

1), 7760 (n = 1), 7761 (n = 1). 
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Appendix 1 Figure 4. Maximum likelihood phylogeny of S. Infantis with isolation year. Core SNP 

maximum likelihood phylogeny of 1288 representatives of 5283 S. Infantis isolates. The clusters in the 

phylogeny are annotated with the Bayesian hierarchical clusters found by fastbaps. The outer ring shows 

the percentage of isolates in each 25SNP cluster that were from each year group. Bayesian hierarchical 

clusters: A, 348 representatives of 1624 isolates; B, 831 representatives of 3283 isolates and C 109 

representatives of 376 isolates. Years: 1989–1990 (n = 1), 1991–1995 (n = 3), 1996–2000 (n = 66), 

2001–2005 (n = 78), 2006–2010 (n = 409), 2011–2015 (n = 1371), 2016–2020 (n = 2702), unknown (n = 

653).  
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Appendix 1 Figure 5. AMR in S. Infantis each year. Proportion of S. Infantis isolates from each year with 

genes conferring resistance to the antimicrobial classes that had resistance in >5% of isolates: 

aminoglycosides, β-lactams, chloramphenicol, fluoroquinolones, sulphonamides, tetracyclines and 

trimethoprim.  Years: 1989–1990 (n = 1), 1991–1995 (n = 3), 1996–2000 (n = 66), 2001–2005 (n = 78), 
2006–2010 (n = 409), 2011–2015 (n = 1372), 2016–2020 (n = 2702), unknown (n = 653). 
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