Article DOI: https://doi.org/10.3201/eid3004.231629

EID cannot ensure accessibility for supplementary materials supplied by authors. Readers who have difficulty accessing supplementary content should contact the authors for assistance.

Detection of Rat Hepatitis E Virus in Pigs, Spain, 2023

Appendix

Animal and Farm Sampling

Intensive pig farms included in the present study were selected by simple random sampling from official flock registers obtained from the Regional Government of Andalusia. The sample size was calculated assuming a herd prevalence of 50%, which provides the highest sample size in studies based on unknown prevalence, with a 95% CI and accepted error of 5%, giving 385 animals to be sampled (*1*). Within each farm, a mean of 75 (range 71–80) animals were sampled by systematic random sampling, with the objective of detecting rat hepatitis E virus (rat HEV) infection with a probability of 95% and a minimum expected prevalence of 4% (*2*).

Rat HEV Molecular Evaluation

Viral RNA extraction from 0.25 mg of feces was performed by diluting feces in 300 μ L of PBS and processed using the IndiSpin Pathogen Kit (formerly known as QIAamp Cador Pathogen Mini Kit) using the QIAcube (QIAGEN, Hilden, Germany) automatic procedure. RNA was then eluted in 50 μ L.

All individuals underwent real-time quantitative PCR (qPCR) testing for HEV and rat HEV. For HEV evaluation, a qPCR assay previously developed and validated by our group was employed (*3*), using the 1st WHO standard for acid nucleic amplification–based HEV RNA assays (supplied by the Paul-Ehrlich-Institut under the code PEI 6219/10) as a positive control. To detect rat HEV RNA, we used a PCR targeting the 5' untranslated region (5'UTR) (*4*). A rat liver sample from a rodent identified in our lab (GenBank accession no. OR282813) was used as positive control. Samples positive for HEV, rat HEV, or both, underwent sequencing. In cases of HEV-positive samples, a nested PCR targeting a 420 nt segment of ORF2 was conducted (*3*). The approach for sequencing rat HEV–positive samples involved three nested PCRs, targeting three regions located on the ORF1. The regions had lengths of 880 bp (*5*), 220 bp, and 230 bp, respectively.

References

- 1. Thrusfield M. Veterinary Epidemiology, fourth ed. Oxford, UK: Wiley Backweel; 2018.
- 2. Ryll R, Bernstein S, Heuser E, Schlegel M, Dremsek P, Zumpe M, et al. Detection of rat hepatitis E virus in wild Norway rats (*Rattus norvegicus*) and black rats (*Rattus rattus*) from 11 European countries. Vet Microbiol. 2017;208:58–68. <u>PubMed https://doi.org/10.1016/j.vetmic.2017.07.001</u>
- 3. Frías M, López-López P, Zafra I, Caballero-Gómez J, Machuca I, Camacho Á, et al. Development and clinical validation of a pangenotypic PCR-based assay for the detection and quantification of hepatitis E virus (*Orthohepevirus* A genus). J Clin Microbiol. 2021;59:e02075-20. <u>PubMed</u> <u>https://doi.org/10.1128/JCM.02075-20</u>
- 4. Parraud D, Lhomme S, Péron JM, Da Silva I, Tavitian S, Kamar N, et al. Rat hepatitis E virus: presence in humans in south-western France? Front Med (Lausanne). 2021;8:726363. <u>PubMed</u> <u>https://doi.org/10.3389/fmed.2021.726363</u>
- Mulyanto, Depamede SN, Sriasih M, Takahashi M, Nagashima S, Jirintai S, et al. Frequent detection and characterization of hepatitis E virus variants in wild rats (*Rattus rattus*) in Indonesia. Arch Virol. 2013;158:87–96. <u>PubMed https://doi.org/10.1007/s00705-012-1462-0</u>

	PCR					
HEV	type	Forward primer, $5' \rightarrow 3'$	Reverse primer, $5' \rightarrow 3'$	Probe, 5'→3'	Ref.	
HEV_qPCR	qPCR	<u>R</u> GT <u>R</u> GTTTCTGGGGTGAC	A <u>K</u> GGRTTGGTTGGRTGA	5'-FAM-	(3)	
				IGATICTCARCCCT		
				TCGC-TAMRA-3		
HEV_ORF2	Nested	CAAGG <u>H</u> TGGCG <u>Y</u> TC <u>K</u> GTTG	CCCTT <u>R</u> TCCTGCTGAGC <u>R</u> T		(3)	
		AGAC	TCTC	_		
		GYTCKGTTGAGACCWCBGG	TT <u>M</u> ACC <u>W</u> GTC <u>R</u> GCTCGCC			
		<u>B</u> GT	ATTGGC			
RatHEV						
RatHEV Parraud	aPCR	CCACGGGGTTAATACTGC	CGGATGCGACCAAGAAAC	5'-6FAM-	(4)	
	4		AG	CGGCTACCGCCTTT	(-)	
				GCTAATGC-BBQ-3'		
RatHEV Mulvanto	Nested	CCTYTGCAGCTTGTCTTTGA	ATGCGTGCTCATGGHATG		(5)	
·		CIGITICITGGICGCATCC	CTGATCTTTCCTTTTGCAC	-	(•)	
RatHEV_B	Nested	TTTGCTAATGCTCAGGTGGT	ATGCGTGCTCATGG <u>H</u> ATG		This	
					study	
		CTGTTTCTTGGTCGCATCCG	AACATCCGCCGTTGCATTC	-		
			TT			
RatHEV E	Nested	CCTYTGCAGCTTGTCTTTGA	ATGCGTGCTCATGGHATG		This	
—			—		study	
		CTGTTTCTTGGTCGCATCC	CTGATCTTTCCTTTTGCAC	-	,	
*Linderlined latters indicate degenerate primers aPCP, quantitative PCP: Ref. reference						

Appendix Table 1. Primer and probe sets used for the detection of rat hepatitis E virus RNA*

Underlined letters indicate degenerate primers. qPCR, quantitative PCR; Ref., reference.

Appendix Table 2. Thermocycle conditions

			Temperature					
	No.				RatHEV	RatHEV		
Step	cycles	Time, s	HEV qPCR	HEV ORF2	Parraud	Mulyanto	RatHEV B	RatHEV E
1st PCR						-		
UNG Activity		600	25°C	25°C	25°C	25°C	25°C	25°C
Retrotranscription		300	52°C	52°C	52°C	52°C	52°C	52°C
Denaturalization		10	95°C	95°C	95°C	95°C	95°C	95°C
Denaturalization	x45	5	95°C	95°C	95°C	95°C	95°C	95°C
Annealing		30	58°C	51°C	58°C	58°C	58°C	58°C
2nd PCR								
Denaturalization		120		95°C		95°C	95°C	95°C
Denaturalization	x45	60		95°C		95°C	95°C	95°C
Annealing		60		52°C		58°C	58°C	58°C
Extension		60		72°C		72°C	72°C	72°C
Final extension		300		72°C		72°C	72°C	72°C

*HEV, hepatitis E virus; ORF, open reading frame; qPCR, quantitative PCR; ratHEV, rat hepatitis E virus.

ID no.	Farm code	Aptitude	Breed	Ct value	GenBank accession no.
158	017CO00036	Reproductive	White	33.22	OR977681
159	017CO00036	Reproductive	White	41.32	OR827969
167	017CO00036	Reproductive	White	39.60	OR827970
170	017CO00036	Reproductive	White	39.29	OR977682
171	017CO00036	Reproductive	White	4120	OR827971
175	017CO00036	Reproductive	White	40.91	OR827972
176	017CO00036	Reproductive	White	41.84	OR827973
186	017CO00036	Fattening	White	38.88	OR977683
187	017CO00036	Fattening	White	37.88	OR977684
188	017CO00036	Fattening	White	38.82	OR977685
190	017CO00036	Fattening	White	36.00	OR977686
191	017CO00036	Fattening	White	37.60	OR977687
192	017CO00036	Fattening	White	37.50	OR977688
193	017CO00036	Fattening	White	37.18	OR977689
105	017C000036	Fattening	White	38.63	OR977690
106	017CO00036	Fattening	White	37 /7	OR077601
108	017C000036	Fattening	White	35.53	OR977692
100	017CO00036	Fattening	White	38.85	OR977692
200	017CO00036	Fattening	White	37.00	OR97769/
200	017CO00036	Fattoning	White	32.43	OR977695
201	017C000030	Fattening	White	27.00	OR977095
202	017C000030	Fattening	White	20.57	00027904
203	017C000030	Fattening	White	30.37	OR977090
204	017C000030	Fattening	White	34.40	OR977097
203	017C000036	Fallening	White	39.02	0R027903
207	017C000036	Fattening	VVnite	33.54	OR977698
200	017C000036	Fallening	VVIIILE	30.00	0007070
210	017C000036	Fattening	VVnite	38.00	UR827976
211	017C000036	Fattening	White	33.82	UR977700
212	017CO00036	Fattening	vvnite	31.85	UR9/7/01
213	017CO00036	Fattening	VVnite	35.13	<u> </u>
214	017CO00036	Fattening	White	36.29	<u>OR977703</u>
215	017CO00036	Fattening	White	40.04	OR827977
216	017CO00036	Fattening	White	31.32	OR977704
217	017CO00036	Fattening	White	35.27	OR827978
218	017CO00036	Fattening	White	34.00	OR977705
219	017CO00036	Fattening	White	34.36	OR977706
220	017CO00036	Fattening	White	36.95	OR977707
221	017CO00036	Fattening	White	35.93	OR977708
223	017CO00036	Fattening	White	38.76	OR977709
224	017CO00036	Fattening	White	38.47	OR827979
234	ES140050000005	Reproductive	Iberian Cross	37.06	OR827980
248	ES140050000005	Reproductive	Iberian Cross	37.41	OR827981
265	ES140050000005	Fattening	Iberian Cross	34.70	OR977710
302	ES140050000005	Fattening	Iberian Cross	38.00	OR977711

Annendix Table 3	Characteristics	of nigs that tes	sted nositive fo	or rat henatitis	F virus
Appendix rable 5.	Characteristics	oi piys inai ies	sieu positive it	or rat nepatitis	

*Ct, cycle threshold; ID, identification.

Appendix Figure 1. Phylogenetic analysis of 65 hepatitis E sequences identified in the study. Sequences were 788 nt in length. Squares (■) indicate sequences of pigs identified in this study; circles (●) indicate previously identified human cases. In color is highlight the farm of origin of positive pigs. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model. The bootstrap consensus tree inferred from 1,000 replicates is taken to represent the evolutionary history of the taxa analyzed.

Appendix Figure 2. Phylogenetic analysis of 70 hepatitis E sequences identified in the study. Sequences were 285 nt in length. Squares (■) indicate sequences of pigs identified in this study; circles (●) indicate previously identified human cases. In color is highlight the farm of origin of positive pigs. The evolutionary history was inferred by using the maximum-likelihood method based on the Tamura-Nei model. The bootstrap consensus tree inferred from 1,000 replicates is taken to represent the evolutionary history of the taxa analyzed.