Volume 6, Number 2—April 2000
Synopsis
The bdr Gene Families of the Lyme Disease and Relapsing Fever Spirochetes: Potential Influence on Biology, Pathogenesis, and Evolution
Figure 2

Figure 2. General organization of two bdr loci in Borrelia turicatae and B. burgdorferi. The gene arrangement depicted for B. turicatae was determined through cloning and sequence analysis of a 2,217 base-pair XbaI restriction fragment. The arrangement for the bdr-carrying locus of B. burgdorferi was previously determined through the sequencing of the B. burgdorferi B31 genome (30). The arrows indicate the direction of transcription. Genes exhibiting homology are indicated by similar shading or hatch marks. Genes indicated by unfilled arrows are not homologous. The numbering is indicated for scale and is not indicative of the positioning of these genes on the plasmids that carry them.
References
- Yound JD. Underreporting of Lyme disease. N Engl J Med. 1998;:338.
- Benach JL, Bosler EM, Hanrahan JP, Coleman JL, Bast TF, Habicht GS, Spirochetes isolated from the blood of two patients with Lyme disease. N Engl J Med. 1983;308:740–2.PubMed
- Marconi RT, Garon CF. Identification of a third genomic group of Borrelia burgdorferi through signature nucleotide analysis and 16S rRNA sequence determination. J Gen Microbiol. 1992;138:533–6.PubMed
- Marconi RT, Garon CF. Phylogenetic analysis of the genus Borrelia: a comparison of North American and European isolates of B. burgdorferi. J Bacteriol. 1992;174:241–4.PubMed
- Marconi RT, Liveris D, Schwartz I. Identification of novel insertion elements, restriction fragment length polymorphism patterns, and discontinuous 23S rRNA in Lyme Disease spirochetes: phylogenetic analyses of rRNA genes and their intergenic spacers in Borrelia japonica sp. nov. and genomic group 21038 (Borrelia andersonii sp. nov.) isolates. J Clin Microbiol. 1995;33:2427–34.PubMed
- Fukunaga M, Hamase A, Okada K, Inoue H, Tsuruta Y, Miyamoto K, Characterization of spirochetes isolated from ticks (Ixodes tanukin, I. turdus and Ixodes columnae) and comparision of the sequences with those of Borrelia burgdorferi sensu lato strains. Appl Environ Microbiol. 1996;62:2338–44.PubMed
- Fukunaga M, Hamase A, Okada K, Nakao M. sp. nov. and Borrelia turdae sp. nov. found from Ixodid ticks in Japan: rapid species identification by 16S rRNA gene--targeted PCR analysis. Microbiol Immunol. 1996;40:877–81.Borrelia tanukiPubMed
- Marconi RT, Samuels DS, Schwan TG, Garon CF. Identification of a protein in several Borrelia species which is related to OspC of the Lyme disease spirochetes. J Clin Microbiol. 1993;31:2577–83.PubMed
- Carlyon JA, Roberts DM, Theisen M, Marconi RT. Molecular analyses of the B. turicatae bdr genes: a polymorphic, linear plasmid carried, paralogous gene family. In press 1999.
- Carlyon JA, Roberts DM, Marconi RT. Evolutionary and molecular analyses of the Borrelia rep super gene family: delineation of six distinct sub-families and demonstration of the genus wide conservation of putative functional domains, structural properties and repeat motifs. Microb Pathog. 2000. In press.PubMed
- Barbour AG. Plasmid analysis of Borrelia burgdorferi, the Lyme disease agent. J Clin Microbiol. 1988;26:475–8.PubMed
- Hinnebusch J, Barbour AG. Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. J Bacteriol. 1991;173:7233–9.PubMed
- Barbour AG. Linear DNA of Borrelia species and antigenic variation. Trends Microbiol. 1993;:1.PubMed
- Hinnebusch J, Barbour AG. Linear- and circular-plasmid copy numbers in Borrelia burgdorferi. J Bacteriol. 1992;174:5251–7.PubMed
- Champion CI, Blanco DR, Skare JT, Haake DA, Giladi M, Foley D, A 9.0 kilobase-pair circular plasmid of Borrelia burgdorferi encodes an exported protein: evidence for expression only during infection. Infect Immun. 1994;62:2653–61.PubMed
- Skare JT, Foley DM, Hernandez SR, Moore DC, Blanco DR, Miller JN, Cloning and molecular characterization of plasmid-encoded antigens of Borrelia burgdorferi. Infect Immun. 1999;67:4407–17.PubMed
- Marconi RT, Sung SY, Hughes CN, Carlyon JA. Molecular and evolutionary analyses of a variable series of genes in Borrelia burgdorferi that are related to ospE and ospF, constitute a gene family, and share a common upstream homology box. J Bacteriol. 1996;178:5615–26.PubMed
- Sung S-Y, LaVoie C, Carlyon JA, Marconi RT. Evolutionary instability of ospE related members of the UHB gene family in Borrelia burgdorferi sensu lato complex isolates. Infect Immun. 1998;66:4656–68.PubMed
- Zhang JR, Norris SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun. 1998;66:3698–704.PubMed
- Zuckert WR, Meyer J. Circular and linear plasmids of Lyme Disease spirochetes have extensive homology: characterization of a repeated DNA element. J Bacteriol. 1996;178:2287–98.PubMed
- Porcella SF, Popova TG, Akins DR, Li M, Radolf JR, Norgard MV. Borrelia burgdorferi supercoiled plasmids encode multicopy open reading frames and a lipoprotein gene family. J Bacteriol. 1996;178:3293–307.PubMed
- Theisen M. Molecular cloning and characterization of nlpH, encoding a novel surface exposed, polymorphic, plasmid-encoded 33kD lipoprotein of Borrelia afzelii. J Bacteriol. 1996;178:6435–42.PubMed
- Zuckert WR, Meyer J, Barbour AG. Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun. 1999;67:3257–66.PubMed
- Yang X, Popova TG, Hagman KE, Wikel SK, Schoeler GB, Caimano MJ, Identification, characterization, and expression of three new members of the Borrelia burgdorferi Mlp (2.9) lipoprotein gene family. Infect Immun. 1999;67:6008–18.PubMed
- Carlyon JA, Marconi RT. Cloning and molecular characterization of a multi-copy, linear plasmid-carried, repeat motif-containing gene from Borrelia turicatae, a causative agent of relapsing fever. J Bacteriol. 1998;180:4974–81.PubMed
- Reeves PR, Hobbs M, Valvano MA, Kido N, Klena J, Maskell D, Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 1996;4:498–503. DOI
- Demerec M. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966;54:61–76.PubMed
- Xu Y, Kodner C, Coleman L, Johnson RC. Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infect Immun. 1996;64:3870–6.PubMed
- Xu Y, Johnson RC. Analysis and comparision of plasmid profiles of Borrelia burgdorferi sensu lato strains. J Clin Microbiol. 1995;33:2679–85.PubMed
- Stålhammar-Carlemalm M, Jenny E, Gern L, Aeschlimann A, Meyer J. Plasmid analysis and restriction fragment length polymorphisms of chromosomal DNA allow a distinction between Borrelia burgdorferi strains. Zentralbl Bakteriol. 1990;274:28–39.PubMed
- Schwan TG, Schrumpf ME, Karstens RH, Clover JR, Wong J, Daugherty M, Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi, isolated from ticks throughout California. J Clin Microbiol. 1993;31:3096–108.PubMed
- Marconi RT, Casjens S, Munderloh UG, Samuels DS. Analysis of linear plasmid dimers in Borrelia burgdorferi sensu lato isolates: implications concerning the potential mechanism of linear plasmid replication. J Bacteriol. 1996;178:3357–61.PubMed
- Marconi RT, Samuels DS, Landry RK, Garon CF. Analysis of the distribution and molecular heterogeneity of the ospD gene among the Lyme disease spirochetes: evidence for lateral gene exchange. J Bacteriol. 1994;176:4572–82.PubMed
- Ferdows MS, Serwer P, Griess GA, Norris SJ, Barbour AG. Conversion of a linear to a circular plasmid in the relapsing fever agent Borrelia hermsii. J Bacteriol. 1996;178:793–800.PubMed
- Carlyon JA, LaVoie C, Sung SY, Marconi RT. Analysis of the organization of multi-copy linear and circular plasmid carried open reading frames in Borrelia burgdorferi sensu lato isolates. Infect Immun. 1998;66:1149–58.PubMed
Page created: December 16, 2010
Page updated: December 16, 2010
Page reviewed: December 16, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.